Results 251 to 260 of about 897,105 (339)

TMC4 localizes to multiple taste cell types in the mouse taste papillae

open access: yesFEBS Open Bio, EarlyView.
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata   +6 more
wiley   +1 more source

Development of Highly Efficient LED Fishing Lights(<Feature>Industrial Applications of Optical Radiation)

open access: diamond, 2014
Tamotsu Okamoto   +9 more
openalex   +2 more sources

Raman‐based label‐free microscopic analysis of the pancreas in living zebrafish larvae

open access: yesFEBS Open Bio, EarlyView.
Forward stimulated Raman scattering (F‐SRS) and epi coherent anti‐Stokes Raman scattering (E‐CARS) allow label‐free discrimination of distinct subcellular structures in the pancreas of living zebrafish larvae. Given the straightforward applicability, we anticipate broad implementation of Raman microscopy in other organs and across various biomedical ...
Noura Faraj   +3 more
wiley   +1 more source

Fishing Community Wireless Network Concept in Kuala Rompin, Pahang, Malaysia

open access: diamond, 2019
J Mill   +11 more
openalex   +1 more source

SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1

open access: yesFEBS Open Bio, EarlyView.
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl   +13 more
wiley   +1 more source

FGFR Like1 drives esophageal cancer progression via EMT, PI3K/Akt, and notch signalling: insights from clinical data and next‐generation sequencing analysis

open access: yesFEBS Open Bio, EarlyView.
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy