Results 1 to 10 of about 50 (50)
A Fixed Point Theorem for Discontinuous Functions [PDF]
AMS classifications: 54H25, 65K10, 49J53 ...
P. Jean-Jacques Herings+5 more
openaire +15 more sources
A uniqueness theorem for fixed points [PDF]
In a recent paper, R. Kellogg [3] showed that if F : D ¯ → D ¯ F:\bar D \to \bar D is a completely continuous map of the closure of a bounded, convex, open set D in a real Banach space X, F
Smith, H. L., Stuart, Charles Alexander
openaire +3 more sources
On a Fixed Point Theorem of Kirk [PDF]
Let X be a reflexive Banach space, D an open and bounded subset of X, and T : D ¯ → X T:\bar D \to X a continuous mapping which is locally pseudocontractive on D.
Claudio H. Morales, Simba A. Mutangadura
openaire +1 more source
Suppose that space is metric. A chain is a finite collection of open sets d1, d2, * * * , dn such that di intersects dj if and only if I i-jj I 1. If the elements of a chain are of diameter less than a positive number e, that chain is said to be an e-chain.
openaire +1 more source
On Tarski’s fixed point theorem [PDF]
Proc. Amer. Math.
openaire +4 more sources
Approximate fixed point theorems [PDF]
Under some weakenings of the condition of the well-known fixed point theorems of Brouwer, Kakutani and Banach the existence of approximate fixed points turns out to be still guaranteed. Also an approximate fixed point theorem is given for certain nonexpansive maps.
TORRE, ANNA, Tijs S., Brânzei R.
openaire +6 more sources
On fixed point theorems and nonsensitivity [PDF]
12 pages, revised version, to appear in Israel J.
Michael Megrelishvili, Eli Glasner
openaire +3 more sources
A fixed point theorem revisited [PDF]
A version of a theorem commonly referred to as Caristi’s Theorem is given. It has an elementary constructive proof and it includes many generalizations of Banach’s fixed point theorem. Several examples illustrate the diversity that can occur.
T. L. Hicks, Alberta Bollenbacher
openaire +1 more source
A fixed point theorem and attractors [PDF]
We investigate attractors for compact sets by considering a certain quotient space. The following theorem is included. Let f : G → G f:G \to G , G a closed convex subset of a Banach space, f a mapping satisfying (i) there exists M ⊂ G M \subset G which is an ...
J. L. Solomon, Ludvik Janos
openaire +2 more sources
On a fixed point theorem of Kirk
AbstractW.A. Kirk [J. Math. Anal. Appl. 277 (2003) 645–650] first introduced the notion of asymptotic contractions and proved the fixed point theorem for this class of mappings. In this note we present a new short and simple proof of Kirk's theorem.
openaire +3 more sources