Results 1 to 10 of about 2,962,665 (347)
General fixed-point method for solving the linear complementarity problem
In this paper, we consider numerical methods for the linear complementarity problem (LCP). By introducing a positive diagonal parameter matrix, the LCP is transformed into an equivalent fixed-point equation and the equivalence is proved.
Xi-Ming Fang
doaj +2 more sources
Ulam stability of functional equations in 2-Banach spaces via the fixed point method [PDF]
Using the fixed point method, we prove the Ulam stability of two general functional equations in several variables in 2-Banach spaces. As corollaries from our main results, some outcomes on the stability of a few known equations being special cases of ...
K. Ciepliński
semanticscholar +2 more sources
Geometrically Constructed Family of the Simple Fixed Point Iteration Method
This study presents a new one-parameter family of the well-known fixed point iteration method for solving nonlinear equations numerically. The proposed family is derived by implementing approximation through a straight line.
Vinay Kanwar +6 more
doaj +2 more sources
Nonlinear Random Stability via Fixed-Point Method [PDF]
We prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y) in various complete random normed spaces.
Yeol Je Cho, Shin Min Kang, Reza Saadati
doaj +3 more sources
Revisiting Blasius Flow by Fixed Point Method [PDF]
The well-known Blasius flow is governed by a third-order nonlinear ordinary differential equation with two-point boundary value. Specially, one of the boundary conditions is asymptotically assigned on the first derivative at infinity, which is the main ...
Ding Xu, Jinglei Xu, Gongnan Xie
doaj +3 more sources
Hybrid Fixed-Point Fixed-Stress Splitting Method for Linear Poroelasticity [PDF]
Efficient and accurate poroelasticity models are critical in modeling geophysical problems such as oil exploration, gas-hydrate detection, and hydrogeology. We propose an efficient operator splitting method for Biot’s model of linear poroelasticity
Paul M. Delgado +2 more
doaj +2 more sources
We discuss the problem of finding approximate solutions of the equation x)0 f()0 (1) In some cases it is possible to find the exact roots of the equation (1) for example when f(x) is a quadratic on cubic polynomial otherwise, in general, is interested
Mehmet Karakas
doaj +2 more sources
A Common Fixed Point Theorem Using an Iterative Method [PDF]
Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G.
Ali Bagheri Vakilabad
doaj +1 more source
Fixed point quasiconvex subgradient method [PDF]
Constrained quasiconvex optimization problems appear in many fields, such as economics, engineering, and management science. In particular, fractional programming, which models ratio indicators such as the profit/cost ratio as fractional objective functions, is an important instance.
Kazuhiro Hishinuma, Hideaki Iiduka
openaire +2 more sources
This work proposes the Enhanced Fixed Point Method (EFPM) as a straightforward modification to the problem of finding an exact or approximate solution for a linear or nonlinear algebraic equation.
Uriel Filobello-Nino +6 more
doaj +1 more source

