Results 281 to 290 of about 834,629 (316)
Some Fixed Point Theorems [PDF]
where f, p are continuous, g satisfies a Lipschitz condition, p(t) has period 1, and g(t)/I ? 1 for large t at any rate. Our choice of hypotheses and the main lines of our investigations have been dominated by what is significant in the theory of differential equations, but our results are concerned solely with sets of points and transformations of ...
J. E. Littlewood, M. L. Cartwright
openaire +3 more sources
Some of the next articles are maybe not open access.
Related searches:
Related searches:
2008
This article gives statements of the Tarski fixed point theorem and the main versions of the topological fixed point principle that have been ...
openaire +1 more source
This article gives statements of the Tarski fixed point theorem and the main versions of the topological fixed point principle that have been ...
openaire +1 more source
1987
An economic system, which consists of a number of relationships among the relevant factors, is modelled as a system of equations or inequalities of certain unknowns, whose solution represents a specific state in which the system settles. This is typically exemplified by the Walrasian competitive economy (Walras, 1874), consisting of the interaction of ...
openaire +2 more sources
An economic system, which consists of a number of relationships among the relevant factors, is modelled as a system of equations or inequalities of certain unknowns, whose solution represents a specific state in which the system settles. This is typically exemplified by the Walrasian competitive economy (Walras, 1874), consisting of the interaction of ...
openaire +2 more sources
1980
In the theory of zero-sum, two-person games the basic theorem was proved by John von Neumann; he used the Brouwer fixed-point theorem. In the theory of many-person games the basic theorem was proved by J. F. Nash; he also used the Brouwer fixed-point theorem. We will prove Nash’s theorem with the Kakutani fixed-point theorem.
openaire +2 more sources
In the theory of zero-sum, two-person games the basic theorem was proved by John von Neumann; he used the Brouwer fixed-point theorem. In the theory of many-person games the basic theorem was proved by J. F. Nash; he also used the Brouwer fixed-point theorem. We will prove Nash’s theorem with the Kakutani fixed-point theorem.
openaire +2 more sources
Some generalizations of fixed point theorems and common fixed point theorems
Journal of Fixed Point Theory and Applications, 2018zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +3 more sources
1998
We begin by the well-known Banach contraction principle. A mapping f: X → Y from a metric space (X, ρ ) into a metric space (Y, d) is said to be a contraction if there is a number 0 ≤ γ < 1 such that inequality \( d\left( {f\left( x \right),f\left( {x'} \right)} \right) \leqslant \gamma \cdot \rho \left( {x,x'} \right) \) holds, for every pair of ...
Dušan Repovš, Pavel V. Semenov
openaire +2 more sources
We begin by the well-known Banach contraction principle. A mapping f: X → Y from a metric space (X, ρ ) into a metric space (Y, d) is said to be a contraction if there is a number 0 ≤ γ < 1 such that inequality \( d\left( {f\left( x \right),f\left( {x'} \right)} \right) \leqslant \gamma \cdot \rho \left( {x,x'} \right) \) holds, for every pair of ...
Dušan Repovš, Pavel V. Semenov
openaire +2 more sources
A fixed point theorem for self-maps of a complete metric space fulfilling a contractive type condition is presented.
Bhola, Praveen K., Sharma, P. L.
openaire +3 more sources
Bhola, Praveen K., Sharma, P. L.
openaire +3 more sources
A contractive type fixed point theorem for a mapping \(f: X\times X\to X\), \(X\) a compact metric space, is proved.
Bhola, P. K., Sharma, P. L.
openaire +2 more sources
Bhola, P. K., Sharma, P. L.
openaire +2 more sources
Considerations for diagnostic COVID-19 tests
Nature Reviews Microbiology, 2021Olivier Vandenberg+2 more
exaly