Results 131 to 140 of about 36,496 (215)

Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity

open access: yesAdvanced Functional Materials, EarlyView.
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee   +10 more
wiley   +1 more source

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Design, Testing, and Validation of a Soft Robotic Sensor Array Integrated with Flexible Electronics for Mapping Cardiac Arrhythmias. [PDF]

open access: yesMicromachines (Basel)
Lahcen AA   +8 more
europepmc   +1 more source

High‐Speed and Scalable Wet Spinning of Graphene/Liquid Crystalline Elastomer Composite Filaments

open access: yesAdvanced Functional Materials, EarlyView.
Polydomain filaments from graphene/liquid crystalline elastomer (LCE) composites are scalably‐manufactured by wet spinning across a wide range of diameters (≈137–1128 µm) at a speed up to 4500 m h−1 through a double diffusion coagulation mechanism, enabling fast actuation and optimized mechanical performance for broad applications.
Antonio Proctor Martinez   +5 more
wiley   +1 more source

Tin‐Based 2D/3D Perovskite Vertical Heterojunction for High‐Performance Synaptic Phototransistors

open access: yesAdvanced Functional Materials, EarlyView.
Phototransistors based on tin‐based 2D/3D perovskite heterostructures show an ultrahigh responsivity and detectivity at a low gate voltage across a broad wavelength region from ultraviolet to near‐infrared. The devices can replicate neuromorphic learning and remembering behaviors to light stimuli, in addition to electric depression and memory erasure ...
Hok‐Leung Loi   +10 more
wiley   +1 more source

Improving the Capacity Retention of Poly(vinylphenothiazine) as Battery Electrode Material by Pore Size Engineering of Porous N‐Doped Carbon Nanospheres as Conductive Additive

open access: yesAdvanced Functional Materials, EarlyView.
By using (meso)porous N‐doped carbon nanospheres with tailored intraparticle porosity and constant particle size as conductive carbon in PVMPT‐based organic battery electrodes, the complete volume of the carbon is accessible for the immobilization of PVMPT, resulting in high accessible specific capacities while maintaining a good rate capability and ...
Niklas Ortlieb   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy