Results 141 to 150 of about 120,723 (296)
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source
Natural frequency of beams with embedded piezoelectric sensors and actuators
A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using
Della, Christian N., Shu, Dongwei
core
Multifunctional transducer [PDF]
Several parameters of a small region of a muscle tissue or other object, can be simultaneously measured using with minimal traumatizing or damage of the object, a trifunctional transducer which can determine the force applied by a muscle fiber, the ...
Culler, V. H. +3 more
core +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Modelling of forging processes assisted by piezoelectric actuators : principles and experimental validation [PDF]
This paper presents the modelling of a forging processes assisted by a piezoelectric actuator (PA), which is used to generate specific low frequency vibration waveforms.
ABBA, Gabriel +4 more
core +3 more sources
Flexible Strain Sensors for Walking Gait Monitoring
This review delves into the growing field of flexible and stretchable strain sensors utilized in human gait analysis, focusing on determining knee bending angle and muscle activities when a human subject walks. Recent advancements have enabled these sensors to accurately capture biomechanical parameters while accommodating the body's natural movements.
Junping Feng +4 more
openaire +1 more source
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
Photoswitching Conduction in Framework Materials
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez +4 more
wiley +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source
Implementation of Drug‐Induced Rhabdomyolysis and Acute Kidney Injury in Microphysiological System
A modular Muscle–Kidney proximal tubule‐on‐a‐chip integrates 3D skeletal muscle and renal proximal tubule tissues to model drug‐induced rhabdomyolysis and acute kidney injury. The coculture system enables dynamic tissue interaction, functional contraction monitoring, and quantification of nephrotoxicity, revealing drug side effect‐induced metabolic ...
Jaesang Kim +4 more
wiley +1 more source

