Results 171 to 180 of about 1,773,070 (385)

Advanced Nano‐Fibrillated Cellulose/Modified MXene Janus Membrane for Continuous 24‐h Water‐Power Co‐Generation

open access: yesAdvanced Functional Materials, EarlyView.
The Janus membrane integrates a superhydrophilic CNF@CTAB‐MXene layer with a superhydrophobic PTFE layer, enabling efficient solar‐driven water evaporation and electricity generation. It achieves an evaporation rate of 1.51 kg m−2 h−1 with excellent salt resistance and long‐term stability.
Yinan Li   +7 more
wiley   +1 more source

Regulating the Interphase Strain in High‐Entropy Oxide Thin Films – An Approach to Attaining Giant Energy Storage Capability under Moderate Electric Fields

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates an interphase strain engineering strategy to regulate capacitive energy storage performance in high‐entropy oxide thin films. Through introducing pyrochlore nanocolumns, the polarization response of perovskite unit cells is strengthened, yielding recoverable energy densities up to 93 J cm−3 with an efficiency of 83% under ...
Hao Luo   +11 more
wiley   +1 more source

Putting communities at the heart of marine conservation

open access: yesOryx, 2023
Gabriella Church   +2 more
doaj   +1 more source

Defining the Normal Bacterial Flora of the Oral Cavity

open access: yesJournal of Clinical Microbiology, 2005
J. A. Aas   +4 more
semanticscholar   +1 more source

Versatile Green Transfer of Magnetoelectronics with Loss‐Free Performance and High Adhesion for Interactive Electronics

open access: yesAdvanced Functional Materials, EarlyView.
An environmentally friendly transfer printing method of nm‐thick giant magnetoresistive (GMR) sensors is demonstrated. This method, relying on water and biocompatible polyvinyl alcohol (PVA) polymer without the need of complex treatments, allows transferring thin films to a wide range of biological, organic, and inorganic substrates.
Olha Bezsmertna   +7 more
wiley   +1 more source

Rational Fine‐Tuning of MOF Pore Metrics: Enhanced SO2 Capture and Sensing with Optimal Multi‐Site Interactions

open access: yesAdvanced Functional Materials, EarlyView.
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy