Results 141 to 150 of about 519,886 (344)

High‐Energy‐Density Aqueous Zinc‐Ion Batteries: Recent Progress, Design Strategies, Challenges, and Perspectives

open access: yesAdvanced Materials, EarlyView.
Strategies achieving high‐energy‐density aqueous zinc‐ion batteries are summarized and analyzed from both their separate advancements and the integrated effectiveness in this review. Then, perspectives are given for valuable guidance for further development of high‐energy‐density aqueous zinc‐ion batteries.
Mingcong Tang   +4 more
wiley   +1 more source

Harnessing Photo‐Energy Conversion in Nanomaterials for Precision Theranostics

open access: yesAdvanced Materials, EarlyView.
Harnessing photo‐energy conversion in nanomaterials enables precision theranostics through light‐driven mechanisms such as photoluminescence, photothermal, photoelectric, photoacoustic, photo‐triggered surface‐enhanced Raman scattering (SERS), and photodynamic processes. This review explores six fundamental principles of photo‐energy conversion, recent
Jingyu Shi   +4 more
wiley   +1 more source

Designing Physical Unclonable Functions From Optically Active Materials

open access: yesAdvanced Materials, EarlyView.
Assigning unforgeable “fingerprints” to manufactured goods is a key strategy to fight global counterfeiting. Optical physical unclonable functions (PUFs) are chemically generated random patterns of optically active materials serving as unique authenticators.
Maxime Klausen   +2 more
wiley   +1 more source

Biomimetic 3D‐Printed Adaptive Hydrogel Bioadhesives Featuring Superior Infection Resistance for Challenging Tissue Adhesion, Hemostasis, and Healthcare

open access: yesAdvanced Materials, EarlyView.
Biomimetic 3D‐printed hydrogel bioadhesives (PTLAs) are designed to address the limitations of existing bioadhesives, offering solutions for challenging tissue adhesion and enhanced healthcare. These PTLAs feature robust wet/underwater tissue adhesion/sealing, superior freeze/pressure and infection resistance, and adaptive self‐healing/gelling capacity,
Qi Wu   +4 more
wiley   +1 more source

Active Fabric Origami Enabled by Digital Embroidery of Magnetic Yarns

open access: yesAdvanced Materials, EarlyView.
This study demonstrates a scalable textile manufacturing process that fabricates active origami fabrics (AFO) via digital embroidery of magnetic yarns. The programmable AFO exhibits reversible 2D and 3D transformations under magnetic fields, enabling functionalities such as altering surface roughness and linear actuation.
Haiqiong Li   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy