Results 241 to 250 of about 281,084 (357)

Ionic Conductive Textiles for Wearable Technology

open access: yesAdvanced Materials, EarlyView.
Recent advances in ionic conductive textiles for wearable technology are summarized, with a focus on soft ionic conductors that exhibit skin‐like flexibility and tissue‐like ion dynamics. Their structures, key characteristics, manufacturing methods, and diverse applications are reviewed.
Lingtao Fang, Yunlu Zhou, Qiyao Huang
wiley   +1 more source

Fluoride-Induced Microhardness Changes in Resin-Modified Glass Ionomer Cements: A Comparative Study. [PDF]

open access: yesJ Clin Exp Dent
Rufasto-Goche KS   +5 more
europepmc   +1 more source

Covalent Surface Modification of Hydrophobic Alkoxides on Ti3C2Tx MXene Nanosheets Toward Amphiphilic and Electrically Conductive Inks

open access: yesAdvanced Materials, EarlyView.
Electrically conductive and amphiphilic MXene inks are achieved by surface modification of sodium alkoxides, where surface‐modified MXenes are dispersible both in water and in non‐polar solvents such as toluene. Alkoxide‐functionalized MXenes also show enhanced environmental stability compared to pristine MXene, leading to higher electrical ...
Seongeun Lee   +4 more
wiley   +1 more source

Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery. [PDF]

open access: yesJ Am Chem Soc
Symes OL   +15 more
europepmc   +1 more source

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

open access: yesAdvanced Materials, EarlyView.
A new series of nitrogen‐substituted MXene films, spanning the full composition range, achieves record‐high conductivity (35 000 S cm⁻¹) and outstanding electromagnetic interference (EMI) shielding across X, Ka, and W bands, even in ultrathin layers.
Ju‐Hyoung Han   +14 more
wiley   +1 more source

Unperceivable Designs of Wearable Electronics

open access: yesAdvanced Materials, EarlyView.
Unperceivable wearable technologies seamlessly integrate into everyone's daily life, for healthcare and Internet‐of‐Things applications. By remaining completely unnoticed both visually and tactilely, by the user and others, they ensure medical privacy and allow natural social interactions.
Yijun Liu   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy