Results 41 to 50 of about 1,714 (244)
Complementary Logic Driven by Dielectrophoretic Assembly of 2D Semiconductors
Scalable, parallel fabrication of complementary logic gates is demonstrated using electric‐field‐driven deterministic assembly of electrochemically exfoliated 2D n‐type MoS2 and p‐type WSe2 nanosheets. This strategy yields MoS2 and WSe2 transistors featuring average mobilities of 4.3 and 3.0 cm2 V−1 s−1, respectively, and on/off ratios of > 104 ...
Dongjoon Rhee +10 more
wiley +1 more source
The disordered growth of dendrites, corrosion, parasitic side reactions, slow de‐solvation kinetics, and inherent safety risks significantly hinder the practical deployment of conventional liquid electrolyte zinc‐ion batteries. In contrast, the novel PU‐EG+DMPA‐Zn polyurethane quasi‐solid‐state electrolyte, enriched with abundant polar functional ...
Ruiqi Liu +10 more
wiley +1 more source
Analysis on Surface Net Cracks of C>800 mm Casting Bloom of Steel Q345E and Control Measures
The surface net cracks of Φ 800 mm casting bloom of steel Q345E (/% : 0.15C, 0.27Si, 1. 37Mn, 0. 009P, 0. 001S, 0. 03Nb, 0. 04V, 0. 030Al, 0.008 ON) have been analyzed by metallurgy and scanning electron microscope.
Chen Yuanqing +4 more
doaj
Wafer‐Scale Synthesis of Mithrene and its Application in UV Photodetectors
A controlled tarnishing step on the silver surface precedes the solid‐vapor‐phase chemical transformation into silver phenylselenolate thin films. The approach yields crystals exceeding 1 µm with improved in‐plane orientation. Integration on graphene phototransistors demonstrates high photoresponsivity, positioning mithrene as a promising material for ...
Maryam Mohammadi +8 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
A new electrochemical system based on a microporous hybrid of carbon nanoplatelets and nanotubes to selectively capture Ni2+ from wastewater is constructed. The system temperature rises rapidly when irradiated with sunlight, which enhances the Ni2+ removal rate by 250% and the selectivity by 53%, and the energy consumption is also reduced by 51 ...
Ziquan Wang +11 more
wiley +1 more source
Inspired by the skin‐toughening mechanism of marine sponges, an ion‐orchestrated structural engineering strategy is proposed to regulate the surface microstructure of hydrogel coatings, enabling the in situ formation of a robust armor layer that enhances mechanical integrity and provides multifunctional protection by suppressing fouling attachment and ...
Wenshuai Yang +11 more
wiley +1 more source
A New Family of Ternary Intermetallic Compounds with Dualistic Atomic Ordering – The ZIP Phases
The ZIP phases are ternary intermetallic compounds with dualistic atomic ordering, i.e., they exhibit one face‐centered cubic (fcc; space group Fd3¯$\bar 3$m) variant and one hexagonal (space group P63/mmc) variant. The ZIP phases in the Nb‐Si‐Ni system are the Nb3SiNi2 (fcc) and Ni3SiNb2 (hexagonal) ternary IMCs, crystal structure schematics of which ...
Matheus A. Tunes +24 more
wiley +1 more source
State‐of‐the‐Art, Insights, and Perspectives for MOFs‐Nanocomposites and MOF‐Derived (Nano)Materials
Different approaches to MOF‐NP composite formation, such as ship‐in‐a‐bottle, bottle‐around‐the‐ship and in situ one‐step synthesis, are used. Owing to synergistic effects, the advantageous features of the components of the composites are beneficially combined, and their individual drawbacks are mitigated.
Stefanos Mourdikoudis +6 more
wiley +1 more source
Rare earth elements (REEs) possess unique physical and chemical properties that render them indispensable in various industries, including electronics, energy production and storage, hybrid and electric vehicles, metallurgy, and petro-chemical processing.
Sabina Andreea Fironda +4 more
doaj +1 more source

