Results 251 to 260 of about 3,489,818 (371)
Skin‐Interfaced Therapeutic Patches for Wound Fluid Management and Transdermal Drug Delivery
This study presents an integrated skin‐interfaced device combining microfluidics, hydrogel film technology, flexible electronics, and iontophoresis‐based transdermal delivery of PDRN to enhance wound healing. The device effectively manages wound fluid, maintains optimal moisture, and non‐invasively delivers therapeutic drugs.
Dongjun Han +5 more
wiley +1 more source
Schematic diagram depicting the fabrication and application of thymosin β4 (Tβ4)‐loaded microneedle patches for wound treatment. The Tβ4 was loaded into chitosan (CS) and sucrose MNs under mild conditions (4°C, 65% relative humidity). The Tβ4 MN patch specifically binds to the downregulated immune regulators Vsig4 and IL22rα2, thereby accelerating ...
Shilong He +4 more
wiley +1 more source
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel +5 more
wiley +1 more source
Leveraging the numerous advantages of ammonium‐ion (NH₄⁺)—including cost‐effectiveness, low corrosiveness, preferential orientation, and rapid diffusion kinetics—aqueous NH₄⁺ batteries (AAIBs) have gained significant attention. This review highlights and evaluates the progress of AAIBs utilizing organic electrode materials such as small molecules ...
Mangmang Shi, Xiaoyan Zhang
wiley +1 more source
Effect of low pressure on the properties of short‐chain fluorocarbon surfactants and their application in aqueous film‐forming foam extinguishing agent [PDF]
Xinhua Zhu +3 more
openalex +1 more source
Rapid Fabrication of Self‐Propelled and Steerable Magnetic Microcatheters for Precision Medicine
A rapid Joule heating fabrication method for the production of self‐propelling, adaptive microcatheters, with tunable stiffness and integrated microfluidic channels is presented. Demonstrated through three microrobotic designs, including a steerable guiding catheter, an untethered wave‐crawling TubeBot, and a distal‐end propelled microcatheter, it was ...
Zhi Chen +5 more
wiley +1 more source

