Results 291 to 300 of about 9,929,917 (363)

Engineering the Hierarchical Porosity of Granular Hydrogel Scaffolds Using Porous Microgels to Improve Cell Recruitment and Tissue Integration

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski   +9 more
wiley   +1 more source

A Vascularized Microphysiological System Reproducing Endochondral Ossification in Vitro to Study Ewing Sarcoma Proliferation and Migration

open access: yesAdvanced Functional Materials, EarlyView.
A biofabricated 3D in vitro model recapitulating endochondral ossification (ECO) is described, mimicking the steps from condensation to chondrogenesis and hypertrophy, culminating with vascularization of the hypertrophic construct. As a model proof of concept application, Ewing Sarcoma cells are seeded in the model, showing modifications in their ...
Maria Vittoria Colombo   +13 more
wiley   +1 more source

Self‐Cascade Catalytic Reaction–Assisted Apoptosis/Calcicoptosis/Ferroptosis Induction with Microsphere‐Aggregated Hydrogels in Triple‐Negative Breast Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
Hyaluronic acid‐dopamine‐based intra‐crosslinked microsphere including cisplatin (HPC MS) is fabricated by spray‐drying and calcium/iron ions are introduced for interparticle crosslinking. Designed microsphere‐aggregated hydrogel (MAH) system including cisplatin/CaO2/FeSO4 can provide apoptosis/calcicoptosis/ferroptosis‐mediated chemo/cascade ...
ChaeRim Hwang   +6 more
wiley   +1 more source

Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee   +6 more
wiley   +1 more source

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Multifunctional Hydroxyapatite Coated with Gallium Liquid Metal‐Based Silver Nanoparticles for Infection Prevention and Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A multifunctional hydroxyapatite (HAp) coating integrated with silver‐gallium liquid metal nanoparticles (HAp‐Ag‐GaNPs) exhibits dual antibacterial and osteogenic properties. It effectively inhibits Gram‐positive and Gram‐negative bacteria, including resistant strains, while enhancing bone regeneration.
Ngoc Huu Nguyen   +17 more
wiley   +1 more source

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy