An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son +12 more
wiley +1 more source
A machine learning and simulation‐guided strategy is demonstrated for gentle, non‐sonication dispersion of carbon nanotubes, preserving structural integrity and performance. This approach enables transparent conductive films with low sheet resistance, high transmittance, and sub‐20 µm printability.
Ying Zhou +7 more
wiley +1 more source
Chiral SURMOFs for Vibrational Circular Dichroism: Multiscale Modeling and Experimental Insights
The use of solid‐state vibrational circular dichroism (VCD) for MOFs is still somewhat unexplored, and in this work, it is shown that chiral surface‐anchored MOFs (SURMOFs) grown on CaF2 provide an excellent platform for VCD. Experimental results are validated through multiscale modeling, showing strong agreement across multiple spectroscopic ...
Ana C. Fingolo +9 more
wiley +1 more source
Structural Porosity and Low Mineral Density in Enamel Rods Drive Molar Incisor Hypomineralisation
This study uses advanced imaging modalities on multiple length scales to show that molar‐incisor hypomineralization does not present as a locally homogeneous pathology. Instead, microstructural defects, characterized through non‐mineralized, protein‐rich sheaths and an altered mineral structure in between prism rods, resulting in local differences in ...
Katharina Jähn‐Rickert +14 more
wiley +1 more source
Counterion Dependent Side‐Chain Relaxation Stiffens a Chemically Doped Thienothiophene Copolymer
Oxidation of a thienothiophene copolymer, p(g3TT‐T2), via different doping strategies and dopant molecules resulted in materials with similar oxidation levels and a high electrical conductivity of ≈100 S cm−1. However, mechanical properties varied significantly, with sub‐glass transition temperatures and elastic moduli spanning from –44°C to –3°C and ...
Mariavittoria Craighero +12 more
wiley +1 more source
Distinct Mechanical Properties of the Respiratory System Evaluated by Forced Oscillation Technique in Acute Exacerbation of COPD and Acute Decompensated Heart Failure. [PDF]
Terraneo S +8 more
europepmc +1 more source
Switchable Thermal Mid‐IR Conducting Polymer Antenna Arrays
This study presents switchable mid‐infrared plasmonic resonances in PEDOT antenna arrays. Their optical extinction peaks can be reversibly switched ‘OFF’ and ‘ON’ by tuning the polaronic charge carrier concentration via the polymer's redox state, offering modulation of optical responses in the thermal mid‐infrared range including around 10 µm ...
Pravallika Bandaru +5 more
wiley +1 more source
A self‐gelling PG@PAC (POD/Gel‐CDH@PA/CHX) powder is developed for infected burn care in austere settings. Upon contact with wound exudate, it instantly forms an adhesive hydrogel, providing simultaneous hemostasis, broad‐spectrum antibacterial activity, reactive oxygen species scavenging, and immunomodulation. In a murine model of S.
Liping Zhang +14 more
wiley +1 more source
Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation. [PDF]
Noh J, Kim P, Yoon YJ.
europepmc +1 more source
From Food to Power: Hydrogel Thermoelectrics for Ingestible Electronics
We introduce a fully edible thermoelectric–electrochromic platform that harvests heat from food and converts it into a visible color change. N‐type and p‐type hydrogel thermoelectric generators connected in series power anthocyanin‐based electrochromic displays, demonstrating the feasibility of safe, biodegradable, ingestible systems for on‐food ...
Antonia Georgopoulou +3 more
wiley +1 more source

