Results 271 to 280 of about 15,450,883 (379)

Physical Intelligence in Small‐Scale Robots and Machines

open access: yesAdvanced Materials, EarlyView.
“Physical intelligence” (PI) empowers biological organisms and artificial machines, especially at the small scales, to perceive, adapt, and even reshape their complex, dynamic, and unstructured operation environments. This review summarizes recent milestones and future directions of PI in small‐scale robots and machines.
Huyue Chen, Metin Sitti
wiley   +1 more source

A Water‐Soluble PVA Macrothiol Enables Two‐Photon Microfabrication of Cell‐Interactive Hydrogel Structures at 400 mm s−1

open access: yesAdvanced Materials, EarlyView.
A PVA‐based macromolecular thiol‐ene formulation enables efficient two‐photon polymerization at extremely low polymer concentrations and high writing speeds of 400 mm s−1 (20×), allowing high‐fidelity laser writing of cell‐interactive hydrogel structures on demand.
Wanwan Qiu   +6 more
wiley   +1 more source

Archeo‐Inspiration from the Cultural History of Glass: Historic Accounts, Anecdotes and Hard Facts as Challenges to Modern Material Science

open access: yesAdvanced Materials, EarlyView.
Glass, historically valued for its purity and durability, has long inspired artists and societies. This article introduces the concept of “Archeo‐Inspiration”, drawing on cultural and historical contexts of glass to guide future material innovations.
Eva von Contzen   +3 more
wiley   +1 more source

Unravelling the Secret of Sulfur Confinement and High Sulfur Utilization in Hybrid Sulfur‐Carbons

open access: yesAdvanced Materials, EarlyView.
Thermal condensation of inverse vulcanized sulfur‐carbon hybrids enables a bottom‐up sulfur confinement strategy, in which a protective carbon phase is progressively constructed around sulfur species. The resulting carbon nanodomains covalently tether sulfur chains and stabilize radical intermediates. This integrated architecture effectively suppresses
Tim Horner   +9 more
wiley   +1 more source

Tailored Xenogeneic‐Free Polymer Surface Promotes Dynamic Migration of Intestinal Stem Cells

open access: yesAdvanced Materials, EarlyView.
This study introduces a PoLymer‐coated Ultra‐stable Surface (PLUS), a nitrogen plasma‐treated poly(ethyleneglycoldimethacrylate), as a stable xenogeneic‐free platform for intestinal stem cell culture. PLUS enhances cell attachment, supports actin‐driven migration, and retains functionality after 3 years of storage. Promoting cytoskeletal reorganization,
Seonghyeon Park   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy