Results 261 to 270 of about 106,210 (348)

Neuroprotective Nanoplatform Integrating Antioxidant MXene Nanozymes and Ferroptosis Inhibitors for Targeted Therapy of Cerebral Ischemia‐Reperfusion Injury

open access: yesAdvanced Science, EarlyView.
Cerebral ischemia‐reperfusion injury (CIRI) is a key pathological process limiting the efficacy of stroke therapy. This study has developed an innovative, multifunctional, brain‐targeted nanoplatform (RFP) containing MXene nanoenzymes and ferroptosis inhibitors.
Lu Wang   +9 more
wiley   +1 more source

Disrupting CSPG‐Driven Microglia–Astrocyte Crosstalk Enables Scar‐Free Repair in Spinal Cord Injury

open access: yesAdvanced Science, EarlyView.
This study identifies CSPGs as key drivers of glial scar maturation after spinal cord injury by reprogramming microglial metabolism and inducing astrocyte fibrosis. To address this, a reactive oxygen species‐responsive, reactive astrocyte‐targeted ChABC gene delivery system is designed to locally degrade CSPGs, precisely disrupt maladaptive glial ...
Yufei Zheng   +10 more
wiley   +1 more source

Crossing the Blood–Brain Barrier with Molecularly Imprinted Polymeric Nanocarriers: An Emerging Frontier in Brain Disease Therapy

open access: yesAdvanced Science, EarlyView.
Molecularly imprinted polymeric nanocarriers (nanoMIPs) offer robust, antibody‐mimetic platforms to overcome the blood‐brain barrier. The article surveys nanoMIP design and ligand‐directed surface engineering that harness receptor‐mediated transcytosis, and highlights therapeutic and diagnostic applications in neurodegeneration, brain tumors and ...
Ranjit De, Shuliang Shi, Kyong‐Tai Kim
wiley   +1 more source

Thermo‐Responsive Self‐Recoverable Porous Sensors with Writable Electrodes: Advancing Wearable Motion Detection

open access: yesAdvanced Science, EarlyView.
A self‐recoverable flexible porous sensor with diverse designability of electrodes is developed through writable vapor phase polymerization using shape memory polymers (SMPs) as the fundamental materials. The sensors enable long‐term comprehensive human motion detection.
Ying Gao   +7 more
wiley   +1 more source

Ultra‐Sensitive Dual‐Resonator Graphene Pressure Sensor with Temperature Self‐Compensation

open access: yesAdvanced Science, EarlyView.
This work presents a graphene resonator sensor based on a dual‐cavity interferometric scheme that achieves high sensitivity to pressure variations. Its lightweight and compact design enables drone‐based field experiments, underscoring the promise of graphene optomechanical devices for portable and scalable sensing applications.
Zhen Wan   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy