Results 241 to 250 of about 1,708,900 (295)
Some of the next articles are maybe not open access.

Fourier Integrals and Fourier Transforms

2014
In the preceding chapter ″Fourier series″ we showed that an arbitrary periodic function with period T can be described as the sum of trigonometric functions with multiples of the period T.
Klaus Weltner   +4 more
openaire   +1 more source

Fourier-Reihen und Fourier-Integral

1970
Jeder Elektroniker hat sicher bereits so manches Werk uber Fourier-Reihen studiert. Jeder, der auf dem Gebiet der Elektrotechnik oder der Funktechnik arbeitet, hat eine gewisse Vorstellung von der qualitativen Beziehung zwischen der Grundfrequenz und den Oberschwingungen, welche die komplizierten Schwingungsformen erzeugen.
openaire   +1 more source

Fourier and Fourier-Mehler Transforms

1993
Recall that in Section 4.A we have the following J- and f-transformations defined on the space (f)* of generalized white noise functionals: for Ф∈(f)* and ξ∈f(ℝ),
Takeyuki Hida   +3 more
openaire   +1 more source

Fourier Integrals and Fourier Transforms

2009
The concept of an infinite series dates back as far as the ancient Greeks such as Archimedes (287-212 b.c., who summed a geometric series in order to compute the area under a parabolic arc. In the eighteenth century, power series expansions for functions like e x , sin x, and arctan x were first published by the Scottish mathematician C.
openaire   +1 more source

Fourier Analysis and Fourier Transform

2017
The origins of Fourier analysis in science can be found in Ptolemy’s decomposing celestial orbits into cycles and epicycles and Pythagoras’ decomposing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J.
Aparna Vyas, Soohwan Yu, Joonki Paik
openaire   +1 more source

Fourier Series and Fourier Transform

1998
In this chapter we look at some of the eigenfunction expansions in terms of Fourier series. We develop the Fourier transform and use it to solve the heat equation again. We also give a brief treatment of the discrete Fourier transform (DFT) and the fast Fourier transform (FFT).
openaire   +1 more source

Fourier series and Fourier transforms

1992
Abstract A familiarity with Fourier mathematics will be needed on several occasions throughout this book. We take the opportunity in this chapter to set out those mathematical properties that will be needed later. It is assumed that the reader has encountered both Fourier series and Fourier transforms before, but may not be entirely ...
openaire   +1 more source

Concept, implementations and applications of Fourier ptychography

Nature Reviews Physics, 2021
Guoan Zheng, Cheng Shen, Shaowei Jiang
exaly  

Fourier-Reihen und Fourier-Integrale

2009
Dieser Abschnitt befasst sich mit Fourier-Reihen: der Sinusreihe, der Kosinusreihe und der Exponentialreihe e ikx . Rechteckschwingungen (mit den Funktionswerten 1, 0 oder −1) sind grosartige Beispiele fur Funktionen mit Deltafunktionen in der Ableitung.
openaire   +1 more source

Home - About - Disclaimer - Privacy