Results 91 to 100 of about 303,830 (309)
On a family of Fourier transforms [PDF]
Not ...
openaire +4 more sources
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger +11 more
wiley +1 more source
Fractional Fourier transform of Airyprime beams
Analytical expressions of the electric field, the centriod, the beam half width, and the linear momentum of the fractional Fourier transform (FrFT) of an Airyprime beam are derived, respectively. The relation between the centriods or the beam half widths
Jian He +5 more
doaj +1 more source
A galactose‐modified supramolecular near‐infrared (NIR) glycoprobe, TCF‐FBN@Gal‐BSA, enables targeted delivery to the liver through the asialoglycoprotein receptor (ASGPR) and facilitates liver‐targeting fluorescence visualization of lipid droplets (LDs) in metabolic dysfunction‐associated steatotic liver disease (MASLD) mice.
Han‐Min Wang +12 more
wiley +1 more source
Fourier transforms and X-ray diffractionby H. Lipson and C. A. Taylor [PDF]
J. Waser
openalex +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai +8 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source

