Results 271 to 280 of about 820,423 (413)

Covalent Adaptable Networks with Associative Siloxane Exchange Enabled by Amide‐Based Internal Catalysis: Designing for Reprocessability and Extrudability by Increasing the Cross‐Link Density

open access: yesAdvanced Functional Materials, EarlyView.
Internally catalyzed siloxane dynamic chemistry is demonstrated resulting from amides covalently linked through alkyl chains to siloxanes. The alkyl length in the siloxane‐containing monomer tunes the network cross‐link density. Siloxane exchange dynamics are faster with increasing cross‐link density, because associative exchange is second order in ...
Nathan S. Purwanto   +5 more
wiley   +1 more source

Quantum Dots and Perovskites‐Based Physically Unclonable Functions for Binary and Ternary Keys via Optical‐to‐Electrical Conversion

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates optoelectronic PUFs that improve on traditional optical and electrical PUFs. The absorber materials are randomly coated through spray coating, ligand exchange, and dynamic spin coating. Incident light generates wavelength‐dependent binary multikey and enhances security ternary keys, approaching near‐ideal inter‐ and intra ...
Hanseok Seo   +6 more
wiley   +1 more source

Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy.

open access: yesProgress in Biophysics and Molecular Biology, 1993
J. Arrondo   +3 more
semanticscholar   +1 more source

Ternary Synergy in Layered Double Hydroxides for Efficient and Stable Nitrate Reduction

open access: yesAdvanced Functional Materials, EarlyView.
Ternary CuZnFe LDH enables efficient electrocatalytic nitrate‐to‐ammonia conversion via controlled in situ reconstruction: zinc leaching creates porous active sites, copper reduced to metallic copper, while iron oxide keeps stable. Synergistic Cu‐Fe redox coupling drives tandem catalysis (nitrate→nitrite→NH3), achieving 95% Faraday efficiency and ...
Jiaqian Kang   +9 more
wiley   +1 more source

Graft Copolymer‐Stabilized Liquid Metal Nanoparticles for Lithium‐Ion Battery Self‐Healing Anodes

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a self‐healing liquid metal anode for lithium‐ion batteries, where graft copolymer‐stabilized eutectic gallium indium (EGaIn) nanoparticles enhance stability and rate performance. The fluorinated grafted copolymer forms ionic channels, preventing EGaIn aggregation and facilitating lithium‐ion migration.
Youngwoo Seo   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy