Results 211 to 220 of about 713,574 (373)

Fabrication of Multifunctional FeSi Gyroid Lattice Composites via Additive Manufacturing and Polymer Infiltration

open access: yesAdvanced Engineering Materials, EarlyView.
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli   +9 more
wiley   +1 more source

Efficient Multifunctional Response and Polarization Switching in BiFeO3–PbZr0.58Ti0.42O3–MnFe2O4‐Based Triphasic Composites for Advanced Pulsating Applications

open access: yesAdvanced Engineering Materials, EarlyView.
Triphasic BiFeO3–PbZr0.58Ti0.42O3–MnFe2O4 composites exhibit enhanced ferroelectric and magnetic behavior, achieving 70.76% energy‐storage efficiency and improved polarization switching. The coupling between ferroelectric and magnetic phases enables multifunctional performance, making these composites promising candidates for next‐generation energy ...
Hassan Raza Khan   +7 more
wiley   +1 more source

Four‐Point Bending Tests at High Temperatures on Commercial MgO‐C Refractory Bricks with and Without Recyclate Considering Different Carbon Contents

open access: yesAdvanced Engineering Materials, EarlyView.
Four‐point bending tests are conducted in an argon atmosphere on commercial MgO‐C brick grades with and without MgO‐C recyclate from room temperature up to 1300 °C. No detrimental effect of the MgO‐C recyclates on bending strength is found. Instead, a decisive influence of the total carbon content is observed, with lower total carbon contents ...
Alexander Schramm   +5 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy