Results 321 to 330 of about 713,574 (373)
Some of the next articles are maybe not open access.

Inverse problem for a multi-term fractional differential equation

Fractional Calculus and Applied Analysis, 2020
Inverse problem for a family of multi-term time fractional differential equation with non-local boundary conditions is studied. The spectral operator of the considered problem is non-self-adjoint and a bi-orthogonal set of functions is used to construct ...
Muhammad Ali, Sara Aziz, S. Malik
semanticscholar   +1 more source

On solutions of fractional differential equations

AIP Conference Proceedings, 2018
In this paper, we obtain exact and approximate solutions of differential equations by reproducing kernel Hilbert space method. We demonstrate our solutions by series.
Akgul, A., Sakar, M. Giyas
openaire   +3 more sources

Fractional Differential Equations in Electrochemistry

Civil-Comp Proceedings, 2009
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Regularity of the solution to Riesz-type fractional differential equation

Integral transforms and special functions, 2019
In this paper, the Riesz-type fractional differential equation is studied. For the equation defined on , its analytical solution is obtained. The existence and uniqueness of the solution are proved when the right-hand side term belongs to Lebesgue space.
Minhao Cai, Changpin Li
semanticscholar   +1 more source

On the fractional differential equations

Applied Mathematics and Computation, 1992
The author deals with the semilinear differential equation \(d^ \alpha x(t)/dt^ \alpha=f(t,x(t))\), \(t>0\), where \(\alpha\) is any positive real number. In [Kyungpook Math. J. 28, No. 2, 119-122 (1988; Zbl 0709.34011)] the author has proved the existence, uniqueness, and some properties of the solution of this equation when ...
openaire   +2 more sources

Analytic solutions of fractional differential equation associated with RLC electrical circuit

Journal of Statistics & Management Systems, 2018
In the present article, we derived the solution of a fractional differential equation associated with a RLC electrical circuit with order 1 < a ≤ 2 and 1 < b ≤ 1. The Sumudu transform technique is used to derive the solution. The results are derived here
Vinod Gill, K. Modi, Yudhveer Singh
semanticscholar   +1 more source

Fractional differential equations and the Schrödinger equation

Applied Mathematics and Computation, 2005
The authors study fractional differential equations associated to the \(\alpha\)-derivative, where such equations appear in many problems. In particular, they obtain a fractional differential equation related to the classical Schrödinger equation by studying Nottale's approach to quantum mechanics via a fractal space-time.
Ben Adda, Fayçal, Cresson, Jacky
openaire   +2 more sources

Averaging Theory for Fractional Differential Equations

Fractional Calculus and Applied Analysis, 2021
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Li, Guanlin, Lehman, Brad
openaire   +1 more source

The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm

, 2020
The article is devoted to the existence and Hyers-Ulam stability of the almost periodic solution to the fractional differential equation with impulse and fractional Brownian motion under nonlocal condition.
Yuchen Guo, Mengqi Chen, X. Shu, Fei Xu
semanticscholar   +1 more source

Fractional Differential Equations

2023
Mouffak Benchohra   +3 more
  +6 more sources

Home - About - Disclaimer - Privacy