Results 1 to 10 of about 73,881 (128)
Hermite-Hadamard type inequalities for the generalized k-fractional integral operators [PDF]
We firstly give a modification of the known Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function.
Erhan Set +2 more
doaj +2 more sources
Refinements of Pólya-SzegŐ and Chebyshev type inequalities via different fractional integral operators [PDF]
Various differential and integral operators have been introduced and applied for the generalization of several integral inequalities. The purpose of this article is to create a more generalized fractional integral operator of Saigo type.
Ayyaz Ahmad, Matloob Anwar
doaj +2 more sources
Advancements in integral inequalities of Ostrowski type via modified Atangana-Baleanu fractional integral operator [PDF]
Convexity and fractional integral operators are closely related due to their fascinating properties in the mathematical sciences. In this article, we first establish an identity for the modified Atangana-Baleanu (MAB) fractional integral operators. Using
Gauhar Rahman +4 more
doaj +2 more sources
New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators
We propose the definitions of some fractional integral operators called k-Atangana–Baleanu fractional integral operators. These newly proposed operators are generalizations of the well-known Atangana–Baleanu fractional integral operators.
Seth Kermausuor, Eze R. Nwaeze
doaj +1 more source
Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions
Recently, many fractional integral operators were introduced by different mathematicians. One of these fractional operators, Atangana-Baleanu fractional integral operator, was defined by Atangana and Baleanu (Atangana and Baleanu, 2016).
Ahmet Ocak Akdemir +3 more
doaj +1 more source
In this paper, by adopting the classical method of proofs, we establish certain new Chebyshev and Grüss-type inequalities for unified fractional integral operators via an extended generalized Mittag-Leffler function. The main results are more general and
Wengui Yang
doaj +1 more source
Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators
In this paper, we introduce the generalized left-side and right-side fractional integral operators with a certain modified ML kernel. We investigate the Chebyshev inequality via this general family of fractional integral operators.
Hari Mohan Srivastava +3 more
doaj +1 more source
General Fractional Vector Calculus
A generalization of fractional vector calculus (FVC) as a self-consistent mathematical theory is proposed to take into account a general form of non-locality in kernels of fractional vector differential and integral operators.
Vasily E. Tarasov
doaj +1 more source
The aim of this paper is to establish new generalized fractional versions of the Hadamard and the Fejér–Hadamard integral inequalities for harmonically convex functions.
Xiaoli Qiang +4 more
doaj +1 more source
Fractional order elliptic problems with inhomogeneous Dirichlet boundary conditions [PDF]
Fractional-order elliptic problems are investigated in case of inhomogeneous Dirichlet boundary data. The boundary integral form is proposed as a suitable mathematical model.
Izsák, Ferenc, Maros, Gábor
core +2 more sources

