Results 31 to 40 of about 130,986 (231)
Fractional Laplacian in bounded domains [PDF]
11 pages, 11 ...
Andrea Zoia+3 more
openaire +6 more sources
Fractional Laplacians : A short survey [PDF]
<p style='text-indent:20px;'>This paper describes the state of the art and gives a survey of the wide literature published in the last years on the fractional Laplacian. We will first recall some definitions of this operator in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-
Daoud, Maha, Laamri, El Haj
openaire +2 more sources
14 pages; this version is considerably ...
MUSINA, Roberta, Nazarov A. I.
openaire +4 more sources
On the Fractional Dunkl Laplacian
In this paper, we present an approach to the fractional Dunkl Laplacian in a framework emerging from certain reflection symmetries in Euclidean spaces. Our main result is pointwise formulas, Bochner subordination, and an extension problem for the fractional Dunkl Laplacian as well.
Fethi Bouzeffour, Wissem Jedidi
openaire +2 more sources
The Pohozaev Identity for the Fractional Laplacian [PDF]
In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem $(- )^s u = f(u)$ in $ $, $u \equiv 0$ in $\mathbb R^n\setminus $. Here, $s\in(0,1)$, $(- )^s$ is the fractional Laplacian in $\mathbb R^n$, and $ $ is a bounded $C^{1,1}$ domain. To establish the identity we use, among other things, that if $u$ is a bounded solution
Ros Oton, Xavier+1 more
openaire +5 more sources
The Spatially Variant Fractional Laplacian
We introduce a definition of the fractional Laplacian $(-Δ)^{s(\cdot)}$ with spatially variable order $s:Ω\to [0,1]$ and study the solvability of the associated Poisson problem on a bounded domain $Ω$. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga and Torrea; however the analytical tools and approaches
Andrea N. Ceretani, Carlos N. Rautenberg
openaire +3 more sources
Laplacian Fractional Revival on Graphs [PDF]
We develop the theory of fractional revival in the quantum walk on a graph using its Laplacian matrix as the Hamiltonian. We first give a spectral characterization of Laplacian fractional revival, which leads to a polynomial time algorithm to check this phenomenon and find the earliest time when it occurs.
Zhanghan Yin+5 more
openaire +3 more sources
On the existence of ground state solutions to critical growth problems nonresonant at zero
We prove the existence of ground state solutions to critical growth $p$-Laplacian and fractional $p$-Laplacian problems that are nonresonant at zero.
Perera, Kanishka
doaj +1 more source
A detour on a class of nonlocal degenerate operators
We present some recent results on a class of degenerate operators which are modeled on the fractional Laplacian, converge to the truncated Laplacian, and are extremal among operators with fractional diffusion along subspaces of possibly different ...
Delia Schiera
doaj +1 more source
Numerical Solution of Fractional Elliptic Problems with Inhomogeneous Boundary Conditions
The numerical solution of fractional-order elliptic problems is investigated in bounded domains. According to real-life situations, we assumed inhomogeneous boundary terms, while the underlying equations contain the full-space fractional Laplacian ...
Gábor Maros, Ferenc Izsák
doaj +1 more source