Results 31 to 40 of about 261,053 (323)
Efficient Approaches for Solving Systems of Nonlinear Time-Fractional Partial Differential Equations
In this work, we present a modified generalized Mittag–Leffler function method (MGMLFM) and Laplace Adomian decomposition method (LADM) to get an analytic-approximate solution for nonlinear systems of partial differential equations (PDEs) of fractional ...
H. Ali +3 more
semanticscholar +1 more source
Generalised Fractional Evolution Equations of Caputo Type [PDF]
This paper is devoted to the study of generalised time-fractional evolution equations involving Caputo type derivatives. Using analytical methods and probabilistic arguments we obtain well-posedness results and stochastic representations for the ...
Hernández-Hernández, M. E. +2 more
core +2 more sources
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations.
Özkan Güner, Adem C. Cevikel
doaj +1 more source
In this paper, the fractional partial differential equations are defined by modified Riemann–Liouville fractional derivative. With the help of fractional derivative and traveling wave transformation, these equations can be converted into the nonlinear ...
Ahmet Bekir, Özkan Güner
doaj +1 more source
In this study, the extended tanh-function method has been used to find further general travelling wave solutions for space-time fractional nonlinear partial differential equations, namely, the time fractional nonlinear Sine-Gordon equation and Klein ...
Umme Sadiya +3 more
doaj +1 more source
Converting fractional differential equations into partial differential equations
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Ji-Huan He, Zheng-Biao Li
openaire +1 more source
New Fractional Complex Transform for Conformable Fractional Partial Differential Equations [PDF]
Abstract Conformable fractional complex transform is introduced in this paper for converting fractional partial differential equations to ordinary differential equations. Hence analytical methods in advanced calculus can be used to solve these equations.
Cenesiz, Y., Kurt, A.
openaire +4 more sources
Weak Solutions for Time-Fractional Evolution Equations in Hilbert Spaces
Our purpose is to introduce a notion of weak solution for a class of abstract fractional differential equations. We point out that the time fractional derivative occurring in the equations is in the sense of the Caputo derivative.
Paola Loreti, Daniela Sforza
doaj +1 more source
Non-local Gehring lemmas in spaces of homogeneous type and applications [PDF]
We prove a self-improving property for reverse H{\"o}lder inequalities with non-local right hand side. We attempt to cover all the most important situations that one encounters when studying elliptic and parabolic partial differential equations as well ...
Auscher, Pascal +3 more
core +1 more source
An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. [PDF]
In this paper, a fractional complex transform (FCT) is used to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and subsequently Reduced Differential Transform Method (RDTM) is ...
Jamshad Ahmad, Syed Tauseef Mohyud-Din
doaj +1 more source

