Development of Heat Engines Powered by Twisted and Coiled Polymer Fiber Actuators
Continuously rotating engines driven by thermally responsive actuating materials can turn waste heat into useful energy. For the first time heat engines operated by twisted and coiled polymer fiber actuators are demonstrated with engine design guided by two simple analytical models.
Geoffrey M. Spinks +2 more
wiley +1 more source
Unique fracture surface in fatigue of shot peened maraging steel
In order to investigate the effect of microstructure in the surface layer produced by shot peening on fatigue properties of a maraging steel, rotating bending fatigue tests were carried out using shot-peened specimens and electro-polished ones of a 350 ...
Norio KAWAGOISHI +5 more
doaj +1 more source
Advances in Safe, Flexible, and Stretchable Batteries for Wearable Applications
Unlike previous reviews centered on component‐based deformability, this work highlights safety‐driven design strategies for flexible and stretchable batteries. By integrating material‐level engineering, geometry‐controlled structures, biocompatibility, and self‐protection mechanisms, it establishes a unified framework that connects mechanical ...
Hyewon Kang +4 more
wiley +1 more source
Ultrasonic attenuation as an indicator of fatigue life of graphite/epoxy fiber composite [PDF]
The narrow band ultrasonic longitudinal wave velocity and attenuation were measured as a function of the transfiber compression-compression fatigue of unidirectional graphite/epoxy composites.
Doll, B., Williams, J. H., Jr.
core +1 more source
Vat Photopolymerized HEMA/HEA Hydrogels for Solvent‐Responsive Transparency and Optical Encryption
Vat‐photopolymerized HEMA/HEA hydrogels exhibit reversible transparency‐opacity switching via hydration‐induced microphase separation and solvent exchange. The printed materials enable hydration sensing, optical encryption, and information storage, while maintaining high ductility and reversible rheology.
Murad Ali +4 more
wiley +1 more source
Liquid Metal Sensors for Soft Robots
This review thoroughly reviews liquid metal sensors in soft robots. Their unique material properties like high conductivity and good biocompatibility are analyzed. Working principles are classified, and applications in environmental perception, motion detection, and human—robot interaction are introduced.
Qi Zhang +7 more
wiley +1 more source
Fracture and Fatigue of Titanium Narrow Dental Implants: New Trends in Order to Improve the Mechanical Response. [PDF]
Velasco-Ortega E +5 more
europepmc +1 more source
3D Printing of Soft Robotic Systems: Advances in Fabrication Strategies and Future Trends
Collectively, this review systematically examines 3D‐printed soft robotics, encompassing material selections, function integration, and manufacturing methodologies. Meanwhile, fabrication strategies are analyzed in order of increasing complexity, highlighting persistent challenges with proposed solutions.
Changjiang Liu +5 more
wiley +1 more source
Effect of Temperature on the Tear Fracture and Fatigue Life of Carbon-Black-Filled Rubber. [PDF]
Luo W, Li M, Huang Y, Yin B, Hu X.
europepmc +1 more source
Hyperelastic Starch Hydrogel Configures Edible and Biodegradable All‐Components for Soft Robots
Hyperelastic starch hydrogel is tailored via a phase separation strategy of solvent‐antisolvent co‐modulation. The mechanical performance of starch hydrogel is widely tuned with maximum strains: 194.4–361.4%; maximum tensile stresses: 34–192 kPa; and Young's moduli: 36.0–205.8 kPa. Notably, the hydrogel achieves complete soil degradation within 24 days
Siyu Yao +7 more
wiley +1 more source

