Results 301 to 310 of about 1,676,393 (393)

Interstitial N‐Strengthened Copper‐Based Bioactive Conductive Dressings Combined with Electromagnetic Fields for Enhanced Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
This study developed a nitrogen‐strengthened copper‐iron‐zinc (N‐CuFeZn) alloy bioactive dressing integrated with electromagnetic stimulation. The coaxial dressing, made from 0.04 mm filaments with 1120 MPa tensile strength, showed that electromagnetic activation enhanced therapeutic outcomes by increasing VEGF expression, promoting angiogenesis (2.1 ...
Xiaohui Qiu   +9 more
wiley   +1 more source

Photocrosslinkable Kidney Decellularized Extracellular Matrix‐Based Bioink for 3D Bioprinting

open access: yesAdvanced Healthcare Materials, EarlyView.
A photocrosslinkable bioink is developed from methacrylated decellularized porcine kidney extracellular matrix to create kidney‐specific 3D constructs. This bioink supports high cell viability, promotes multicellular spheroid formation, and enables stable multilayer bioprinting with tunable mechanical properties, providing a versatile platform for ...
Jaemyung Shin   +5 more
wiley   +1 more source

Runaway resorption of microcracks contributes to age-related hip-fracture patients. [PDF]

open access: yesSci Rep
Gray M   +9 more
europepmc   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

Functionalized Reduced Graphene Oxide‐Based Nanocomposite Hydrogels for Enhanced Osteogenesis in Bone Tissue Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
Charge‐opposed reduced graphene oxide fillers are co‐integrated into biopolymeric nanocomposite scaffolds, synergistically enhance osteogenesis. Multiscale characterization reveals how surface chemistry and porosity dictate ectopic mineral architecture.
George Mihail Vlăsceanu   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy