Results 101 to 110 of about 210,651 (298)
This study shows that lizard osteoderm capping tissue is a hyper‐mineralized hydroxyapatite layer consistently covering the superficial osteoderm surface in those species studied here, yet it varies greatly in morphology, nanostructure, and mechanical performance across species.
Adrian Rodriguez‐Palomo +10 more
wiley +1 more source
Experimental study on the self-suspending proppant-laden flow in a single fracture
The flow of proppant-laden fluid (PLF) in the fracture is a typical problem of solid-liquid two phase flow, and the transportation and deposition of proppants are essential to determine the flow conductivity of hydraulic fracturing.
Peng Li +5 more
doaj +1 more source
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff +9 more
wiley +1 more source
Bio‐Inspired Molecular Events in Poly(Ionic Liquids)
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley +1 more source
Micromechanical model of crack growth in fiber reinforced ceramics [PDF]
A model based on the micromechanical mechanism of crack growth resistance in fiber reinforced ceramics is presented. The formulation of the model is based on a small scale geometry of a macrocrack with a bridging zone, the process zone, which governs the
Rubinstein, Asher A., Xu, Kang
core +1 more source
Time dependent fracture of polymers [PDF]
The fracture behavior of polymers is reviewed with emphasis on the time dependent aspects of the problem. Following a delineation of the history of crack propagation investigations in linearly viscoelastic materials, the effects of temperature and ...
Knauss, W. G.
core
Novel Functional Materials via 3D Printing by Vat Photopolymerization
This Perspective systematically analyzes strategies for incorporating functionalities into 3D‐printed materials via Vat Photopolymerization (VP). It explores the spectrum of achievable functionalities in recently reported novel materials—such as conductive, energy‐storing, biodegradable, stimuli‐responsive, self‐healing, shape‐memory, biomaterials, and
Sergey S. Nechausov +3 more
wiley +1 more source
Cuttlebone‐inspired metamaterials exploit a septum‐wall architecture to achieve excellent mechanical and functional properties. This review classifies existing designs into direct biomimetic, honeycomb‐type, and strut‐type architectures, summarizes governing design principles, and presents a decoupled design framework for interpreting multiphysical ...
Xinwei Li, Zhendong Li
wiley +1 more source
Dual-bond fracture metamaterials with full-field extrinsic toughening
Fracture resistance presents a pivotal challenge in mechanical metamaterials, as traditional designs often fail to mitigate crack propagation and enhance energy dissipation. Despite efforts to enlarge the fracture process zone, energy dissipation remains
Zhiqiang Meng +4 more
doaj +1 more source
R-Curve and fatigue crack growth behavior in partially stabilized zirconia
It has been known that the high fracture toughness of partially stabilized zirconia (PSZ) is due to a process zone caused by stress induced transformation at a crack tip.
Akira YOSHIKAWA +3 more
doaj +1 more source

