Results 111 to 120 of about 359,239 (313)

Synergistic Osteogenesis After Co‐Administration of cmRNAs Encoding BMP‐2 and BMP‐7 Utilizing a Transcript‐Activated Matrix

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that the dual delivery of BMP‐2/‐7 coding cmRNAs for bone healing is demonstrated as feasible, safe, and highly osteogenic. Compared to single BMP‐2 or BMP‐7 cmRNAs, the combination enhances the production of both mineral and organic components of the extracellular matrix when delivered using a collagen‐HA scaffold, supporting ...
Claudia Del Toro Runzer   +7 more
wiley   +1 more source

Risk Factors for Fractures of Dogs in Quezon City, Philippines

open access: yesMedia Kedokteran Hewan
A retrospective case-control study was conducted in dogs with bone fractures presented at the Veterinary Teaching Hospital - Diliman Station, Companion Animal Clinic, College of Veterinary Medicine, University of the Philippines Los Baños from January ...
Jerome Biscante   +2 more
doaj   +1 more source

3D Multicellular Scaffold Based Model for Advancing Bone Disorder Research

open access: yesAdvanced Functional Materials, EarlyView.
A scalable 3D multicellular in vitro bone model engineered by integrating osteoblasts, osteoclasts, and endothelial cells on biodegradable scaffolds. The system recapitulates key features of human bone remodeling and disease pathology. As a proof of concept, the model mimics osteogenesis imperfecta, demonstrating its potential as a physiologically ...
Gali Guterman‐Ram   +5 more
wiley   +1 more source

Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix

open access: yesAdvanced Functional Materials, EarlyView.
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt   +2 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Nanoparticles Decorated Nanotubes: Advanced Local Therapies From Anodized Nanoengineered Titanium Implants

open access: yesAdvanced Functional Materials, EarlyView.
This comprehensive review explores therapeutic titanium implants designed to enhance integration and provide superior antibacterial efficacy. It is focused on anodized titanium implants with titania nanotubes (TNTs) loaded with nanoparticles (NPs) for local therapeutic release, enhancing bioactivity and bactericidal functions.
Divya Chopra   +5 more
wiley   +1 more source

Bone Resection for Isolated Ulnar Head Fracture

open access: yesCase Reports in Orthopedics, 2017
Distal ulnar fractures often occur with distal radius fractures (DRFs), and ulnar styloid fractures commonly occur in the setting of DRF. However, isolated ulnar head fractures are rare.
Hiromasa Akino   +4 more
doaj   +1 more source

Enhancing Mechanical Deformability of Rigid Conjugated Polymers through Functional Additive‐Induced Persistence Length Modulation

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates a molecular strategy to enhance the stretchability of conjugated polymers by incorporating plasticizing molecular additives (PMAs). PMAs reduce the persistence length and promote chain entanglement, enabling deformable thin films with preserved electrical performance. A systematic analysis combining rheology, neutron scattering,
Sein Chung   +11 more
wiley   +1 more source

Revealing the Auxetic Behavior of Biomimetic Multimaterial and Region‐Specific Nanofibrous Fascicle‐Inspired Scaffolds via Synchrotron Multiscale Digital Volume Correlation: Innovative Building Blocks for the Enthesis Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
Enthesis injuries are a worldwide healthcare problem. Biomimetic electrospun enthesis fascicle‐inspired scaffolds, with and without nano‐mineralization are developed. Human Mesenchymal Stromal cells (hMSCs) express the most balanced enthesis markers on the non‐mineralized scaffolds.
Alberto Sensini   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy