Results 151 to 160 of about 2,866,239 (361)
Introduction: Lower extremity long bone, femoral and tibial shaft, fractures often have associated injuries. Patients with lower extremity long bone fractures in the Department of Orthopaedics can land up in high dependency unit admissions, mostly due ...
Satish Prasad Barnawal+6 more
doaj +1 more source
A modular bioreactor platform was developed in order to replicate bone homeostasis and pathology, thereby integrating mechanical loading, dynamic perfusion, and a 3D‐printed microfluidic chamber. With precise control of environmental parameters and dual perfusion for composite tissue models, the system enhances physiological relevance for studying bone
Moritz Pfeiffenberger+8 more
wiley +1 more source
Fractures of the Carpal Bones [PDF]
Christiansen B+3 more
openaire +3 more sources
Bifunctional ZnO‐containing orthosilicophosphate glasses (SPGs) composed mainly of orthotetrahedral groups with the unique glass network structure without long‐chain units are prepared via melt‐quenching. The glasses exhibit excellent antibacterial activity and upregulate the expression of osteogenic markers by releasing inorganic ions.
Sungho Lee+4 more
wiley +1 more source
S. Cummings+13 more
semanticscholar +1 more source
Metal‐organic frameworks (MOFs) have been synthesized using calcium (Ca‐MOF), magnesium (Mg‐MOF), and as hybrids (Ca/Mg‐MOF) for bone healing applications. MOFs are integrated into hydrogel polymer networks for injectable, sprayable, and coating applications.
Cho‐E Choi+4 more
wiley +1 more source
This innovative ink engineering strategy enables the integration of bioactive nanocomposites into complex, multi‐material constructs. By combining primary chemical coupling and post‐printing photocuring, the study achieves tunable printability, seamless material integration, and robust mechanical performance.
João R. Maia+7 more
wiley +1 more source
AI‐Assisted Design and Evaluation of SLM‐Ti64 Implants for Enhanced Bone Regeneration
AI‐driven simulations of biological healing, combining biomechanical modeling and machine learning, enable personalized orthopedic treatments. By decoding healing patterns influenced by implants and patient‐specific factors, this approach advances fracture repair understanding, optimizes implant design, and supports precision medicine and sustainable ...
Muhammad Usama Zaheer+3 more
wiley +1 more source