Results 141 to 150 of about 441,728 (330)
3D Multicellular Scaffold Based Model for Advancing Bone Disorder Research
A scalable 3D multicellular in vitro bone model engineered by integrating osteoblasts, osteoclasts, and endothelial cells on biodegradable scaffolds. The system recapitulates key features of human bone remodeling and disease pathology. As a proof of concept, the model mimics osteogenesis imperfecta, demonstrating its potential as a physiologically ...
Gali Guterman‐Ram +5 more
wiley +1 more source
Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt +2 more
wiley +1 more source
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz +7 more
wiley +1 more source
In the Frame: Women and the Discursive Construction of Gender Equality in Theory and Practice [PDF]
Carol Johnson
openalex +1 more source
Defect Analysis of the β– to γ–Ga2O3 Phase Transition
The role of defects at all the relevant stages of the β$\beta$‐ to γ$\gamma$‐Ga2O3 polymorph transition is investigated using a multi method approach. The positron annihilation spectroscopy based results show that the defect density decreases after the transition, and that changes in defect configuration within the γ phase occur with increasing ...
Umutcan Bektas +9 more
wiley +1 more source
The Eye4HK Meme and the Construction of an Injustice Frame
Steve Kwok-Leung Chan +3 more
openalex +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source

