Results 111 to 120 of about 258,214 (256)

Engineering Bilayer Tandem Catalysts on Si‐Based Photocathodes for High‐performance CO2 Reduction to Produce Methane

open access: yesAdvanced Materials, EarlyView.
A Cu/Ag‐Cu bilayer tandem catalyst is designed for a pyramid‐structured p‐Si photocathode, creating multiple and functionally distinct interfaces tailored to specific reaction steps and intermediate stabilization. This Cu/Ag‐Cu‐decorated p‐Si photocathode exhibits both high photocurrent and good selectivity for photoelectrochemical CO2 reduction to CH4.
Hao Wu   +14 more
wiley   +1 more source

Energy‐Efficient, Sustainable Cascade Glucose Electrooxidation into Glucaric Acid

open access: yesAdvanced Materials, EarlyView.
This study presents a tandem system that efficiently converts glucose into glucaric acid while generating renewable electricity. By decoupling the oxidation process into two cascaded steps, the system achieves an overall 90% Faradaic efficiency and 80% conversion efficiency at ∼0.6 VRHE, significantly reducing energy consumption compared to traditional
Mingming He   +15 more
wiley   +1 more source

Self‐Assembled Monolayers in p–i–n Perovskite Solar Cells: Molecular Design, Interfacial Engineering, and Machine Learning–Accelerated Material Discovery

open access: yesAdvanced Materials, EarlyView.
This review highlights the role of self‐assembled monolayers (SAMs) in perovskite solar cells, covering molecular engineering, multifunctional interface regulation, machine learning (ML) accelerated discovery, advanced device architectures, and pathways toward scalable fabrication and commercialization for high‐efficiency and stable single‐junction and
Asmat Ullah, Ying Luo, Stefaan De Wolf
wiley   +1 more source

Ultrasound in Women's Health: Mechanisms, Applications, and Emerging Opportunities

open access: yesAdvanced Materials, EarlyView.
As healthcare moves toward decentralization, ultrasound technologies are evolving from strictly imaging tools in clinical settings into versatile diagnostic and therapeutic platforms, with growing roles addressing women's health needs. This review highlights how ultrasound's underlying physical mechanisms can be harnessed to reduce disparities in women'
Sarah B. Ornellas   +7 more
wiley   +1 more source

Porous Bi2S3 Bulk With Excellent Thermoelectric Performance by Solid States Replacement and Low Melting‐Point Metal Volatilization

open access: yesAdvanced Materials, EarlyView.
By introducing FeCoNi medium‐entropy alloy, the bismuth sulfide (Bi2S3) material achieves a record‐high ZT of 1.1 at 773 K, owing to the solid‐states replacement reaction and the volatilization of low melting‐point metal. This strategy is also applicable to other sulfur‐based thermoelectric materials.
Zi‐Yuan Wang   +9 more
wiley   +1 more source

Efficient Non‐Invasive Rejuvenation of Spent Lithium Iron Phosphate Batteries Through Controlled Overdischarge

open access: yesAdvanced Materials, EarlyView.
This strategy rejuvenates spent lithium iron phosphate battery by non‐invasively targeting Li+ trapped within the solid‐electrolyte interphase (SEI). This method mitigates copper dissolution and reduces Li/Fe antisite defects, achieving 9.56% capacity recovery and 214 cycles lifespan extension. The process requires only 3 MJ kg−1 of energy and emitting
Jinu Song   +6 more
wiley   +1 more source

Perspective on Aqueous Batteries: Historical Milestones and Modern Revival

open access: yesAdvanced Materials, EarlyView.
This review retraces the development of aqueous batteries from classical Zn‐MnO2 chemistry to modern Zn and Ni systems, correlating voltage, capacity, and electrolyte formulation with practical performance. By mapping historical success and failure onto current and future research directions, it identifies guiding principles that steer the design of ...
Fangwang Ming   +5 more
wiley   +1 more source

Microenvironment Modulation‐Based Nanomaterial‐Loaded Hydrogel Dressings for Diabetic Foot Ulcers: Research Progress and Future Perspectives

open access: yesAdvanced Materials Interfaces, EarlyView.
xx xx. ABSTRACT Diabetic foot ulcer (DFU) is a chronic complication of diabetes, primarily caused by hyperglycemia, peripheral vascular disease, and neuropathy. Characterized by persistent hyperglycemia, impaired perfusion, inflammation, and infection, DFUs pose significant challenges to healing and are associated with high morbidity and amputation ...
Tang Yuqing   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy