Results 31 to 40 of about 149 (148)
Spinal cord injury (SCI) poses significant challenges for regeneration due to a series of secondary injury mechanisms. How to use biomaterial approach to target the failed regeneration after SCI remains a critical challenge. This review systematically evaluates current strategies to optimize biomaterial topographies for neurite outgrowth, axonal ...
Wei Xu+7 more
wiley +1 more source
Synthetic matrix metalloproteinase (MMP)‐degradable polyethylene glycol (PEG)‐based hydrogels are developed to investigate the influence of mechanical and biochemical cues on cardioid development. Matrix stiffness and cell adhesion motifs significantly regulate cardioid formation, chamber morphogenesis, contractile function, and cardioid transcriptome.
Yuanhui Song+6 more
wiley +1 more source
Engineering Assembloids to Mimic Graft‐Host Skeletal Muscle Interaction
This study develops a graft‐host skeletal muscle assembloid model combining neuromuscular organoids with tissue‐engineered constructs. Pre‐seeding decellularized muscles with myogenic cells enhances cell migration and axon invasion from the organoid. The model exhibits regenerative capacity following acute damage, advancing the understanding of human ...
Lucia Rossi+13 more
wiley +1 more source
Recent Applications of Mesoporous Silica Nanoparticles in Gene Therapy
The review summarizes the synthesis of mesoporous silica nanoparticles (MSNs) with modifiable surface properties, functionalization strategies, mechanism of therapeutic payload release, and current applications in gene therapy, focusing on their capabilities in the targeted delivery of therapeutic nucleic acids, CRISPR‐Cas systems, and other genetic ...
Tamanna Binte Huq+4 more
wiley +1 more source
Small extracellular vesicles (sEVs) are encapsulated into protective shells composed of metal‐phenolic networks (MPNs) and secondary poly(ethylene glycol) layers. This surface modification approach enhances the storage stability of sEVs while maintaining their integrity and functionality. The shells can be selectively disassembled under mild conditions.
Chenyu Wang+8 more
wiley +1 more source
Peptide Display Directed Assembly of Biopolymer Core–Silica Shell Particles
Bacterial cells are engineered to produce biopolyester particles displaying peptides mediating growth of silica. Peptide‐coated biopolyester particles are treated with silica precursors and silica shell formation is studied. Transmission electron microscopy shows silica‐coated BPs which are formed after the silicification treatment. Characterization of
Deeptee Chandrashekhar Pande+2 more
wiley +1 more source
Through tuning biomimetic scaffold stiffness and matrix composition the reparative capacity of astrocyte progenitors is enhanced. Soft, collagen‐IV/fibronectin‐functionalized scaffolds promote progenitor growth while improving angiogenic, immunomodulatory, and neurotrophic capacity in a stiffness and matrix‐dependent manner, demonstrating the impact of
Cian O'Connor+10 more
wiley +1 more source
Integration of Bioengineered Tools in Assisted Reproductive Technologies
A conceptual illustration depicting the collaboration between a medical professional (right) and a scientist (left). Their connection highlights the integration of scientific research and clinical practice. This representation underscores the role of emerging technologies in bridging fundamental research with applied reproductive healthcare.
Aslı Ak+3 more
wiley +1 more source
Cardiac Organoid Model Inspired Micro‐Robot Smart Patch to Treat Myocardial Infarction
The heart organoid model exhibits the acidic microenvironment characteristic of myocardial infarction, which emerges as a pivotal force propelling the movement of micro‐robots. These micro‐robots, administered through microneedles, can penetrate deep into the tissue, effectively delivering therapeutic payloads to facilitate heart repair.
Fangfang Wang+12 more
wiley +1 more source
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source