Results 281 to 290 of about 945,229 (334)

Theory‐Guided Design of Non‐Precious Single‐Atom Catalyst for Electrocatalytic Chlorine Evolution

open access: yesAdvanced Functional Materials, EarlyView.
To overcome the reliance on noble metals for the chlorine evolution reaction (CER), we designed a non‐precious single‐atom catalyst (SAC), NiN3O–O. It achieves a low overpotential of 75 mV, 95.8% Cl2 selectivity, and outperforms commercial dimensionally stable anodes (DSAs).
Kai Ma   +9 more
wiley   +1 more source

Counterion Dependent Side‐Chain Relaxation Stiffens a Chemically Doped Thienothiophene Copolymer

open access: yesAdvanced Functional Materials, EarlyView.
Oxidation of a thienothiophene copolymer, p(g3TT‐T2), via different doping strategies and dopant molecules resulted in materials with similar oxidation levels and a high electrical conductivity of ≈100 S cm−1. However, mechanical properties varied significantly, with sub‐glass transition temperatures and elastic moduli spanning from –44°C to –3°C and ...
Mariavittoria Craighero   +12 more
wiley   +1 more source

Role of frustrations in cell reprogramming. [PDF]

open access: yesPNAS Nexus
Yao Y, Zhu J, Li W, Pei D.
europepmc   +1 more source

Localized High‐Concentration Electrolyte with Water‐Miscible Diluent Enables Stable Zinc Deposition and Long‐Life Aqueous Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu   +4 more
wiley   +1 more source

Mechanistic Insights into a Synergistic FeOx/Fe‐N4 System for Practical Nitrate Abatement with Value‐Added Ammonia Recovery

open access: yesAdvanced Functional Materials, EarlyView.
This work provides a novel interpretation of the nitrate reduction mechanism on iron oxides (FeOx) by employing constant‐potential density functional calculations and reports the design and synthesis of a robust and high‐performance Fe3O4/Fe‐N4‐C catalyst with remarkable Faradaic efficiency, current density, and stability under practical reaction ...
Qiang Zhou   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy