Results 161 to 170 of about 6,192,955 (429)
Optical Hydrogen Sensing Materials for Applications at Sub‐Zero Temperatures
This study demonstrates the viability of optical hydrogen sensors at temperatures as low as −60°C. Using advanced metal hydride materials, the sensors detect hydrogen with high sensitivity, speed, and stability across a wide range of concentrations. These findings open doors for safe hydrogen detection in extreme cold, enabling applications in aviation,
Ziqing Yuan+4 more
wiley +1 more source
Emulating nature's unparalleled engineering, this work introduces butterfly‐inspired hybrid composites for high‐performance transportation and defense sectors. Leveraging biomimicry, these lightweight composites feature butterfly leg‐inspired hierarchical fibrous assemblies and butterfly wing‐inspired sandwich‐structured architecture, to achieve ...
Nello D. Sansone+7 more
wiley +1 more source
This review synthesizes the evolution of radiative heat transfer, emphasizing the transition from far‐field to near‐field regimes. Traditional frameworks, such as Planck's law, are revisited alongside modern innovations like fluctuational electrodynamics. Applications span nanoscale thermal management, energy harvesting, and thermophotovoltaic systems.
Ambali Alade Odebowale+6 more
wiley +1 more source
Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst
This review summarizes photoresponsive MOFs for photocatalytic applications, focusing on their capacity to enhance light harvesting, charge transfer, and surface reactions. While existing studies provide foundational insights, emerging characterization techniques enable a deeper understanding of photoresponsive MOFs.
Rui Liu+3 more
wiley +1 more source
This study presents an electronic fine‐tuning (EFT) strategy to optimize the electronic structures of Ru species and single‐atom Zn sites by the virtue of layered nanosheets, significantly enhancing ORR and HER activities. Spectroscopic analysis and theoretical calculations uncover that this EFT effect breaks the ORR scaling limitation and positions ...
Tingyu Lu+12 more
wiley +1 more source
Multi‐Scaled Cellulosic Nanonetworks from Tunicates
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj+10 more
wiley +1 more source
Heat Conduction Modulation in Incommensurate Twisted Stacking of Transition‐Metal Dichalcogenide
The interlayer thermal conductance in twisted bilayer TMDs is initially investigated experimentally by the thermoreflectance method. The overlap of lattice vibrations within individual layers and the interlayer interactions, as elucidated through both Raman spectroscopy and molecular dynamics simulations, are demonstrated to be critical factors in ...
Bin Xu+6 more
wiley +1 more source
Energy efficiency of fossil and renewable fuels
Assessment results of renewable energy supply in agriculture and forestry are often questionable because 1. the methodology does not describe the nature dependent conditions of agricultural production, 2. there is no standard system boundary, 3. thermodynamic laws are violated and/or ignored, 4. direct and embodied energy is mixed, 5.
openaire +4 more sources
Energy Policies for Passenger Motor Vehicles [PDF]
This paper assesses the costs and effectiveness of several energy policies for light-duty motor vehicles in the United States, using the National Energy Modeling System (NEMS).
Kenneth Small
core