Results 61 to 70 of about 70,846 (249)

The log Grothendieck ring of varieties

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “P$P$” over the usual Grothendieck ring. We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.
Andreas Gross   +4 more
wiley   +1 more source

Adjoint exactness [PDF]

open access: yes, 2008
Plato's ideas and Aristotle's real types from the classical age, Nominalism and Realism of the mediaeval period and Whitehead's modern view of the world as pro- cess all come together in the formal representation by category theory of exactness in ...
Heather, Michael, Rossiter, Nick
core  

An ordered framework for partial multivalued functors

open access: yes, 2015
The category Rel of sets and relations intimately ties the notions of function, partial multivalued function, and direct image under a function through the description of Rel as the Kleisli category of the covariant power set functor on Set. We present a
Chand, Alveen, Weiss, Ittay
core   +1 more source

Torsion classes of extended Dynkin quivers over commutative rings

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract For a Noetherian R$R$‐algebra Λ$\Lambda$, there is a canonical inclusion torsΛ→∏p∈SpecRtors(κ(p)Λ)$\mathop {\mathsf {tors}}\Lambda \rightarrow \prod _{\mathfrak {p}\in \operatorname{Spec}R}\mathop {\mathsf {tors}}(\kappa (\mathfrak {p})\Lambda)$, and each element in the image satisfies a certain compatibility condition.
Osamu Iyama, Yuta Kimura
wiley   +1 more source

Brown representability for space-valued functors

open access: yes, 2011
In this paper we prove two theorems which resemble the classical cohomological and homological Brown representability theorems. The main difference is that our results classify small contravariant functors from spaces to spaces up to weak equivalence of ...
A. Heller   +19 more
core   +1 more source

Radical preservation and the finitistic dimension

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We introduce the notion of radical preservation and prove that a radical‐preserving homomorphism of left artinian rings of finite projective dimension with superfluous kernel reflects the finiteness of the little finitistic, big finitistic, and global dimension.
Odysseas Giatagantzidis
wiley   +1 more source

On the local Kan structure and differentiation of simplicial manifolds

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We prove that arbitrary simplicial manifolds satisfy Kan conditions in a suitable local sense. This allows us to expand a technique for differentiating higher Lie groupoids worked out in [8] to the setting of general simplicial manifolds. Consequently, we derive a method to differentiate simplicial manifolds into higher Lie algebroids.
Florian Dorsch
wiley   +1 more source

Probabilistic convergence spaces and generalized metric spaces

open access: yesInternational Journal of Mathematics and Mathematical Sciences, 1998
The category PPRS(Δ), whose objects are probabilistic pretopological spaces which satisfy an axiom (Δ) and whose morphisms are continuous mappings, is introduced.
Paul Brock
doaj   +1 more source

Profinite direct sums with applications to profinite groups of type ΦR$\Phi _R$

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We show that the ‘profinite direct sum’ is a good notion of infinite direct sums for profinite modules, having properties similar to those of direct sums of abstract modules. For example, the profinite direct sum of projective modules is projective, and there is a Mackey's formula for profinite modules described using these sums.
Jiacheng Tang
wiley   +1 more source

T-motives

open access: yes, 2016
Considering a (co)homology theory $\mathbb{T}$ on a base category $\mathcal{C}$ as a fragment of a first-order logical theory we here construct an abelian category $\mathcal{A}[\mathbb{T}]$ which is universal with respect to models of $\mathbb{T}$ in ...
Barbieri-Viale, L.
core   +1 more source

Home - About - Disclaimer - Privacy