Results 41 to 50 of about 23,662 (137)

Arithmetic sparsity in mixed Hodge settings

open access: yesBulletin of the London Mathematical Society, Volume 57, Issue 11, Page 3511-3521, November 2025.
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley   +1 more source

The Fundamental Theorem of Galois Theory (tex)

open access: yes, 2013
We give a short and self-contained proof of the Fundamental Theorem of Galois Theory.(This a tex file. Pdf file: link below.)
openaire   +1 more source

The geometry and arithmetic of bielliptic Picard curves

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 5, November 2025.
Abstract We study the geometry and arithmetic of the curves C:y3=x4+ax2+b$C \colon y^3 = x^4 + ax^2 + b$ and their associated Prym abelian surfaces P$P$. We prove a Torelli‐type theorem in this context and give a geometric proof of the fact that P$P$ has quaternionic multiplication by the quaternion order of discriminant 6.
Jef Laga, Ari Shnidman
wiley   +1 more source

A note on local formulae for the parity of Selmer ranks

open access: yesBulletin of the London Mathematical Society, Volume 57, Issue 10, Page 3112-3132, October 2025.
Abstract In this note, we provide evidence for a certain ‘twisted’ version of the parity conjecture for Jacobians, introduced in prior work of Dokchitser, Green, Konstantinou and the author. To do this, we use arithmetic duality theorems for abelian varieties to study the determinant of certain endomorphisms acting on p∞$p^\infty$‐Selmer groups.
Adam Morgan
wiley   +1 more source

Finite, connected, semisimple, rigid tensor categories are linear

open access: yes, 2002
Fusion categories are fundamental objects in quantum algebra, but their definition is narrow in some respects. By definition a fusion category must be k-linear for some field k, and every simple object V is strongly simple, meaning that (V) = k. We prove
Kuperberg, Greg
core  

Motivic p$p$‐adic tame cohomology

open access: yesBulletin of the London Mathematical Society, Volume 57, Issue 10, Page 3194-3210, October 2025.
Abstract We construct a comparison functor between (A1$\mathbf {A}^1$‐local) tame motives and (□¯${\overline{\square }}$‐local) log‐étale motives over a field k$k$ of positive characteristic. This generalizes Binda–Park–Østvær's comparison for the Nisnevich topology.
Alberto Merici
wiley   +1 more source

The Weil-\'etale fundamental group of a number field II

open access: yes, 2010
We define the fundamental group underlying to Lichtenbaum's Weil-\'etale cohomology for number rings. To this aim, we define the Weil-\'etale topos as a refinement of the Weil-\'etale sites introduced in \cite{Lichtenbaum}. We show that the (small) Weil-\
Morin, Baptiste
core   +1 more source

Improving the efficiency of using multivalued logic tools: application of algebraic rings. [PDF]

open access: yesSci Rep, 2023
Suleimenov IE   +3 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy