Results 41 to 50 of about 23,662 (137)
Arithmetic sparsity in mixed Hodge settings
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley +1 more source
The Fundamental Theorem of Galois Theory (tex)
We give a short and self-contained proof of the Fundamental Theorem of Galois Theory.(This a tex file. Pdf file: link below.)
openaire +1 more source
The geometry and arithmetic of bielliptic Picard curves
Abstract We study the geometry and arithmetic of the curves C:y3=x4+ax2+b$C \colon y^3 = x^4 + ax^2 + b$ and their associated Prym abelian surfaces P$P$. We prove a Torelli‐type theorem in this context and give a geometric proof of the fact that P$P$ has quaternionic multiplication by the quaternion order of discriminant 6.
Jef Laga, Ari Shnidman
wiley +1 more source
A note on local formulae for the parity of Selmer ranks
Abstract In this note, we provide evidence for a certain ‘twisted’ version of the parity conjecture for Jacobians, introduced in prior work of Dokchitser, Green, Konstantinou and the author. To do this, we use arithmetic duality theorems for abelian varieties to study the determinant of certain endomorphisms acting on p∞$p^\infty$‐Selmer groups.
Adam Morgan
wiley +1 more source
Finite, connected, semisimple, rigid tensor categories are linear
Fusion categories are fundamental objects in quantum algebra, but their definition is narrow in some respects. By definition a fusion category must be k-linear for some field k, and every simple object V is strongly simple, meaning that (V) = k. We prove
Kuperberg, Greg
core
Motivic p$p$‐adic tame cohomology
Abstract We construct a comparison functor between (A1$\mathbf {A}^1$‐local) tame motives and (□¯${\overline{\square }}$‐local) log‐étale motives over a field k$k$ of positive characteristic. This generalizes Binda–Park–Østvær's comparison for the Nisnevich topology.
Alberto Merici
wiley +1 more source
Purely Inseparable Galois theory I: The Fundamental Theorem [PDF]
Lukas Brantner, Joe Waldron
openalex +1 more source
The Weil-\'etale fundamental group of a number field II
We define the fundamental group underlying to Lichtenbaum's Weil-\'etale cohomology for number rings. To this aim, we define the Weil-\'etale topos as a refinement of the Weil-\'etale sites introduced in \cite{Lichtenbaum}. We show that the (small) Weil-\
Morin, Baptiste
core +1 more source
Systems of Precision: Coherent Probabilities on Pre-Dynkin Systems and Coherent Previsions on Linear Subspaces. [PDF]
Derr R, Williamson RC.
europepmc +1 more source
Improving the efficiency of using multivalued logic tools: application of algebraic rings. [PDF]
Suleimenov IE +3 more
europepmc +1 more source

