Results 21 to 30 of about 43,102 (116)
L^2-torsion of hyperbolic manifolds of finite volume
Suppose $\bar{M}$ is a compact connected odd-dimensional manifold with boundary, whose interior $M$ comes with a complete hyperbolic metric of finite volume.
Lueck, Wolfgang, Schick, Thomas
core +3 more sources
Curvature‐dimension condition of sub‐Riemannian α$\alpha$‐Grushin half‐spaces
Abstract We provide new examples of sub‐Riemannian manifolds with boundary equipped with a smooth measure that satisfy the RCD(K,N)$\mathsf {RCD}(K, N)$ condition. They are constructed by equipping the half‐plane, the hemisphere and the hyperbolic half‐plane with a two‐dimensional almost‐Riemannian structure and a measure that vanishes on their ...
Samuël Borza, Kenshiro Tashiro
wiley +1 more source
Dual spaces of geodesic currents
Abstract Every geodesic current on a hyperbolic surface has an associated dual space. If the current is a lamination, this dual embeds isometrically into a real tree. We show that, in general, the dual space is a Gromov hyperbolic metric tree‐graded space, and express its Gromov hyperbolicity constant in terms of the geodesic current.
Luca De Rosa, Dídac Martínez‐Granado
wiley +1 more source
On semi-slant $\xi^\perp-$Riemannian submersions
The aim of the present paper to define and study semi-slant $\xi^\perp-$Riemannian submersions from Sasakian manifolds onto Riemannian manifolds as a generalization of anti-invariant $\xi^\perp-$Riemannian submersions, semi-invariant $\xi^\perp ...
Akyol, Mehmet Akif, Sarı, Ramazan
core +1 more source
The three‐dimensional Seiberg–Witten equations for 3/2$3/2$‐spinors: A compactness theorem
Abstract The Rarita‐Schwinger–Seiberg‐Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac‐type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10,
Ahmad Reza Haj Saeedi Sadegh +1 more
wiley +1 more source
ABSTRACT In nonisothermal setting, microstructural interactions may determine finite‐speed heat propagation. We consider such an effect in the dynamics of a viscous incompressible complex fluid (i.e., one with “active” microstructure) through a porous medium.
Luca Bisconti, Paolo Maria Mariano
wiley +1 more source
Projective Compactness and Conformal Boundaries
Let $\overline{M}$ be a smooth manifold with boundary $\partial M$ and interior $M$. Consider an affine connection $\nabla$ on $M$ for which the boundary is at infinity.
Cap, Andreas, Gover, A. Rod
core +1 more source
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
The noncommutative Lorentzian cylinder as an isospectral deformation
We present a new example of a finite-dimensional noncommutative manifold, namely the noncommutative cylinder. It is obtained by isospectral deformation of the canonical triple associated to the Euclidean cylinder. We discuss Connes' character formula for
Brodzki +28 more
core +1 more source
A note on the magnetic Steklov operator on functions
Abstract We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the ...
Tirumala Chakradhar +3 more
wiley +1 more source

