Results 61 to 70 of about 40,312 (218)

Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 6, December 2025.
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately 
Ulrich Derenthal, Florian Wilsch
wiley   +1 more source

The m$m$‐step solvable anabelian geometry of mixed‐characteristic local fields

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 6, December 2025.
Abstract Let K$K$ be a mixed‐characteristic local field. For an integer m⩾0$m \geqslant 0$, we denote by Km/K$K^m / K$ the maximal m$m$‐step solvable extension of K$K$, and by GKm$G_K^m$ the maximal m$m$‐step solvable quotient of the absolute Galois group GK$G_K$ of K$K$.
Seung‐Hyeon Hyeon
wiley   +1 more source

Minimal projective varieties satisfying Miyaoka's equality

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract In this paper, we establish a structure theorem for a minimal projective klt variety X$X$ satisfying Miyaoka's equality 3c2(X)=c1(X)2$3c_2(X) = c_1(X)^2$. Specifically, we prove that the canonical divisor KX$K_X$ is semi‐ample and that the Kodaira dimension κ(KX)$\kappa (K_X)$ is equal to 0, 1, or 2. Furthermore, based on this abundance result,
Masataka Iwai   +2 more
wiley   +1 more source

On non-conjugate Coxeter elements in well-generated reflection groups [PDF]

open access: yesDiscrete Mathematics & Theoretical Computer Science, 2015
Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter ...
Victor Reiner   +2 more
doaj   +1 more source

Symmetric products and puncturing Campana‐special varieties

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch   +2 more
wiley   +1 more source

A single source theorem for primitive points on curves

open access: yesForum of Mathematics, Sigma
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$ . We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By
Maleeha Khawaja, Samir Siksek
doaj   +1 more source

THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS

open access: yesForum of Mathematics, Pi, 2014
We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise ...
TOBY GEE, MARK KISIN
doaj   +1 more source

On Galois Extension of Rings [PDF]

open access: yesNagoya Mathematical Journal, 1966
Let Λ be a ring and G a finite group of ring automorphisms of Λ. The totality of elements of Λ which are left invariant by G is a subring of Λ. We call it the G-fixed subring of Λ. Let be the crossed product of Λ and G with trivial factor set, i.e. {u0} is a Λ-free basis of Δ and , and let Γ be a subring of the G-fixed subring of Λ which has the same ...
openaire   +3 more sources

Periodic points of rational functions over finite fields

open access: yesTransactions of the London Mathematical Society, Volume 12, Issue 1, December 2025.
Abstract For q$q$ a prime power and ϕ$\phi$ a rational function with coefficients in Fq$\mathbb {F}_q$, let p(q,ϕ)$p(q,\phi)$ be the proportion of P1Fq$\mathbb {P}^1\left(\mathbb {F}_q\right)$ that is periodic with respect to ϕ$\phi$. Furthermore, if d$d$ is a positive integer, let Qd$Q_d$ be the set of prime powers coprime to d!$d!$ and let P(d,q ...
Derek Garton
wiley   +1 more source

Explicit height estimates for CM curves of genus 2

open access: yesTransactions of the London Mathematical Society, Volume 12, Issue 1, December 2025.
Abstract In this paper, we make explicit the constants of Habegger and Pazuki's work from 2017 on bounding the discriminant of cyclic Galois CM fields corresponding to genus 2 curves with CM and potentially good reduction outside a predefined set of primes. We also simplify some of the arguments.
Linda Frey   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy