Results 41 to 50 of about 3,053 (239)
Generalized affine transformation monoids on Galois rings
Let A be a ring with identity. The generalized affine transformation monoid Gaff(A) is defined as the set of all transformations on A of the form x↦xu+a (for all x∈A), where u,a∈A.
Yonglin Cao
doaj +1 more source
Chebotarev's theorem for cyclic groups of order pq$pq$ and an uncertainty principle
Abstract Let p$p$ be a prime number and ζp$\zeta _p$ a primitive p$p$th root of unity. Chebotarev's theorem states that every square submatrix of the p×p$p \times p$ matrix (ζpij)i,j=0p−1$(\zeta _p^{ij})_{i,j=0}^{p-1}$ is nonsingular. In this paper, we prove the same for principal submatrices of (ζnij)i,j=0n−1$(\zeta _n^{ij})_{i,j=0}^{n-1}$, when n=pr ...
Maria Loukaki
wiley +1 more source
A single source theorem for primitive points on curves
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$ . We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By
Maleeha Khawaja, Samir Siksek
doaj +1 more source
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source
On Azumaya algebras with a finite automorphism group
Let B be a ring with 1, C the center of B, and G a finite automorphism group of B. It is shown that if B is an Azumaya algebra such that B=⊕∑g∈GJg where Jg={b∈B|bx=g(x)b for all x∈B}, then there exist orthogonal central idempotents {fi∈C|i=1,2,…,m ...
George Szeto, Lianyong Xue
doaj +1 more source
Computing a Group of Polynomials over a Galois Field in FPGA Architecture
For the most extensive range of tasks, such as real-time data processing in intelligent transport systems, etc., advanced computer-based techniques are required. They include field-programmable gate arrays (FPGAs).
Sergei V. Shalagin
doaj +1 more source
Symmetric Galois groups under specialization
Given an irreducible bivariate polynomial $f(t,x)\in \mathbb{Q}[t,x]$, what groups $H$ appear as the Galois group of $f(t_0,x)$ for infinitely many $t_0\in \mathbb{Q}$? How often does a group $H$ as above appear as the Galois group of $f(t_0,x)$, $t_0\in \mathbb{Q}$?
Monderer, Tali, Neftin, Danny
openaire +2 more sources
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
On separable abelian extensions of rings
Let R be a ring with 1, G(=〈ρ1〉×…×〈ρm〉) a finite abelian automorphism group of R of order n where 〈ρi〉 is cyclic of order ni. for some integers n, ni, and m, and C the center of R whose automorphism group induced by G is isomorphic with G.
George Szeto
doaj +1 more source
The m$m$‐step solvable anabelian geometry of mixed‐characteristic local fields
Abstract Let K$K$ be a mixed‐characteristic local field. For an integer m⩾0$m \geqslant 0$, we denote by Km/K$K^m / K$ the maximal m$m$‐step solvable extension of K$K$, and by GKm$G_K^m$ the maximal m$m$‐step solvable quotient of the absolute Galois group GK$G_K$ of K$K$.
Seung‐Hyeon Hyeon
wiley +1 more source

