Results 51 to 60 of about 3,053 (239)
Connections on trivial vector bundles over projective schemes
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation.
Biswas, Indranil +2 more
doaj +1 more source
Minimal projective varieties satisfying Miyaoka's equality
Abstract In this paper, we establish a structure theorem for a minimal projective klt variety X$X$ satisfying Miyaoka's equality 3c2(X)=c1(X)2$3c_2(X) = c_1(X)^2$. Specifically, we prove that the canonical divisor KX$K_X$ is semi‐ample and that the Kodaira dimension κ(KX)$\kappa (K_X)$ is equal to 0, 1, or 2. Furthermore, based on this abundance result,
Masataka Iwai +2 more
wiley +1 more source
Given a tame Galois branched cover of curves π:X→Y with any finite Galois group G whose representations are rational, we compute the dimension of the (generalized) Prym variety Prymρ(X) corresponding to any irreducible representation ρ of G. This formula
Amy E. Ksir
doaj +1 more source
Symmetric products and puncturing Campana‐special varieties
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch +2 more
wiley +1 more source
COMPUTING IMAGES OF GALOIS REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$
ANDREW V. SUTHERLAND
doaj +1 more source
The Determination of Galois Groups [PDF]
A technique is described for the nontentative computer determination of the Galois groups of irreducible polynomials with integer coefficients. The technique for a given polynomial involves finding high-precision approximations to the roots of the polynomial, and fixing an ordering for these roots.
openaire +2 more sources
Periodic points of rational functions over finite fields
Abstract For q$q$ a prime power and ϕ$\phi$ a rational function with coefficients in Fq$\mathbb {F}_q$, let p(q,ϕ)$p(q,\phi)$ be the proportion of P1Fq$\mathbb {P}^1\left(\mathbb {F}_q\right)$ that is periodic with respect to ϕ$\phi$. Furthermore, if d$d$ is a positive integer, let Qd$Q_d$ be the set of prime powers coprime to d!$d!$ and let P(d,q ...
Derek Garton
wiley +1 more source
Explicit height estimates for CM curves of genus 2
Abstract In this paper, we make explicit the constants of Habegger and Pazuki's work from 2017 on bounding the discriminant of cyclic Galois CM fields corresponding to genus 2 curves with CM and potentially good reduction outside a predefined set of primes. We also simplify some of the arguments.
Linda Frey +2 more
wiley +1 more source
Topological K‐theory of quasi‐BPS categories for Higgs bundles
Abstract In a previous paper, we introduced quasi‐BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi‐BPS categories (called BPS in this case) are noncommutative analogues of Hitchin integrable systems.
Tudor Pădurariu, Yukinobu Toda
wiley +1 more source
Diophantine Equation Generated by the Subfield of a Circular Field
Two forms f (x, y, z) and g(x, y, z) of degree 3 were constructed, with their values being the norms of numbers in the subfields of degree 3 of the circular fields K13 and K19 , respectively.
I. G. Galyautdinov, E. E. Lavrentyeva
doaj +1 more source

