Results 81 to 90 of about 676,000 (198)

Minimal projective varieties satisfying Miyaoka's equality

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract In this paper, we establish a structure theorem for a minimal projective klt variety X$X$ satisfying Miyaoka's equality 3c2(X)=c1(X)2$3c_2(X) = c_1(X)^2$. Specifically, we prove that the canonical divisor KX$K_X$ is semi‐ample and that the Kodaira dimension κ(KX)$\kappa (K_X)$ is equal to 0, 1, or 2. Furthermore, based on this abundance result,
Masataka Iwai   +2 more
wiley   +1 more source

THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS

open access: yesForum of Mathematics, Pi, 2014
We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise ...
TOBY GEE, MARK KISIN
doaj   +1 more source

Computing modular Galois representations [PDF]

open access: yesRendiconti del Circolo Matematico di Palermo, 2013
Fifth version changes : Rewritten the technical part of the introduction, and corrected a few ...
openaire   +2 more sources

Symmetric products and puncturing Campana‐special varieties

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 6, December 2025.
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch   +2 more
wiley   +1 more source

Explicit height estimates for CM curves of genus 2

open access: yesTransactions of the London Mathematical Society, Volume 12, Issue 1, December 2025.
Abstract In this paper, we make explicit the constants of Habegger and Pazuki's work from 2017 on bounding the discriminant of cyclic Galois CM fields corresponding to genus 2 curves with CM and potentially good reduction outside a predefined set of primes. We also simplify some of the arguments.
Linda Frey   +2 more
wiley   +1 more source

The Ramanujan and Sato–Tate Conjectures for Bianchi modular forms

open access: yesForum of Mathematics, Pi
We prove the Ramanujan and Sato–Tate conjectures for Bianchi modular forms of weight at least $2$ . More generally, we prove these conjectures for all regular algebraic cuspidal automorphic representations of $\operatorname {\mathrm {GL}}_2 ...
George Boxer   +4 more
doaj   +1 more source

Topological K‐theory of quasi‐BPS categories for Higgs bundles

open access: yesJournal of Topology, Volume 18, Issue 4, December 2025.
Abstract In a previous paper, we introduced quasi‐BPS categories for moduli stacks of semistable Higgs bundles. Under a certain condition on the rank, Euler characteristic, and weight, the quasi‐BPS categories (called BPS in this case) are noncommutative analogues of Hitchin integrable systems.
Tudor Pădurariu, Yukinobu Toda
wiley   +1 more source

Components of moduli stacks of two-dimensional Galois representations

open access: yesForum of Mathematics, Sigma
In the article [CEGS20b], we introduced various moduli stacks of two-dimensional tamely potentially Barsotti–Tate representations of the absolute Galois group of a p-adic local field, as well as related moduli stacks of Breuil–Kisin modules with descent ...
Ana Caraiani   +3 more
doaj   +1 more source

Eigenvarieties for classical groups and complex conjugations in Galois representations

open access: yes, 2012
The goal of this paper is to remove the irreducibility hypothesis in a theorem of Richard Taylor describing the image of complex conjugations by $p$-adic Galois representations associated with regular, algebraic, essentially self-dual, cuspidal ...
Taïbi, Olivier
core   +1 more source

On the section conjecture over fields of finite type

open access: yesMathematische Nachrichten, Volume 298, Issue 11, Page 3476-3493, November 2025.
Abstract Assume that the section conjecture holds over number fields. We prove then that it holds for a broad class of curves defined over finitely generated extensions of Q$\mathbb {Q}$. This class contains every projective, hyperelliptic curve, every hyperbolic, affine curve of genus ≤2$\le 2$, and a basis of open subsets of any curve.
Giulio Bresciani
wiley   +1 more source

Home - About - Disclaimer - Privacy