Results 281 to 290 of about 1,412,303 (334)
Some of the next articles are maybe not open access.
On gamma function inequalities
Scandinavian Actuarial Journal, 1973Watson's method [1] is used to find two convergent monotonically non-decreasing sequences whose upper bounds are equal to Γ(l)Γ(l∓2a)/Γ2(l∓a) ( = K say), provided l > max (0, - 2a). Boyd [2] showed that Gurland's inequality [3] for K corresponds to the first term of the first sequence; Raja Rao's inequality [4] corresponds to the second term of the ...
openaire +2 more sources
1976
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros.
Lewandowski, Zdzisław (1929-2011) +2 more
openaire +1 more source
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros.
Lewandowski, Zdzisław (1929-2011) +2 more
openaire +1 more source
Fractional Gamma Noise Functionals
Complex Analysis and Operator TheoryzbMATH Open Web Interface contents unavailable due to conflicting licenses.
Ayadi, Mohamed +3 more
openaire +1 more source
The Gamma Function and the Incomplete Gamma Functions
2017The gamma function is defined for \(s \in \mathbb{C}\) by $$\displaystyle{ \varGamma \left (s\right ) =\int _{ 0}^{\infty }t^{s-1}e^{-t}dt }$$
openaire +1 more source
Almost \(\gamma\)-continuous functions
1992Summary: A new class of functions, called `almost \(\gamma\)-continuous' is introduced and several of their properties are investigated. This new class is utilized to improve some already published results concerning weak continuity [\textit{N. Levine}, Am. Math. Mon.
CAMMAROTO, Filippo, T. NOIRI
openaire +2 more sources
2004
We have defined (Set Theory, III, p. 179) the function n! for every integer n ≥ 0, as equal to the product \(\prod\limits_{0 \leqslant k \leqslant n} {(n - k)}\); so 0!=1 and (n+1)!=(n+1)n! for n ≥ 0. We set г(n) = (n − 1)! for each integer n ≥ 1; we propose to define, on the set of real numbers x > 0, a continuous function г(x) extending the function ...
Elementary Theory, Philip Spain
openaire +1 more source
We have defined (Set Theory, III, p. 179) the function n! for every integer n ≥ 0, as equal to the product \(\prod\limits_{0 \leqslant k \leqslant n} {(n - k)}\); so 0!=1 and (n+1)!=(n+1)n! for n ≥ 0. We set г(n) = (n − 1)! for each integer n ≥ 1; we propose to define, on the set of real numbers x > 0, a continuous function г(x) extending the function ...
Elementary Theory, Philip Spain
openaire +1 more source
A kilonova following a long-duration gamma-ray burst at 350 Mpc
Nature, 2022Jillian Rastinejad +2 more
exaly

