Results 291 to 300 of about 1,392,967 (336)
Some of the next articles are maybe not open access.
2004
We have defined (Set Theory, III, p. 179) the function n! for every integer n ≥ 0, as equal to the product \(\prod\limits_{0 \leqslant k \leqslant n} {(n - k)}\); so 0!=1 and (n+1)!=(n+1)n! for n ≥ 0. We set г(n) = (n − 1)! for each integer n ≥ 1; we propose to define, on the set of real numbers x > 0, a continuous function г(x) extending the function ...
Elementary Theory, Philip Spain
openaire +1 more source
We have defined (Set Theory, III, p. 179) the function n! for every integer n ≥ 0, as equal to the product \(\prod\limits_{0 \leqslant k \leqslant n} {(n - k)}\); so 0!=1 and (n+1)!=(n+1)n! for n ≥ 0. We set г(n) = (n − 1)! for each integer n ≥ 1; we propose to define, on the set of real numbers x > 0, a continuous function г(x) extending the function ...
Elementary Theory, Philip Spain
openaire +1 more source
1976
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros.
Lewandowski, Zdzisław (1929-2011) +2 more
openaire +1 more source
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros.
Lewandowski, Zdzisław (1929-2011) +2 more
openaire +1 more source
2012
In what follows, we introduce the classical Gamma function in Sect. 2.1. It is essentially understood to be a generalized factorial. However, there are many further applications, e.g., as part of probability distributions (see, e.g., Evans et al. 2000).
Willi Freeden, Martin Gutting
openaire +1 more source
In what follows, we introduce the classical Gamma function in Sect. 2.1. It is essentially understood to be a generalized factorial. However, there are many further applications, e.g., as part of probability distributions (see, e.g., Evans et al. 2000).
Willi Freeden, Martin Gutting
openaire +1 more source
A kilonova following a long-duration gamma-ray burst at 350 Mpc
Nature, 2022Jillian Rastinejad +2 more
exaly
Driving fast-spiking cells induces gamma rhythm and controls sensory responses
Nature, 2009Jessica A Cardin +2 more
exaly
Gamma frequency entrainment attenuates amyloid load and modifies microglia
Nature, 2016Annabelle C Singer +2 more
exaly

