Results 211 to 220 of about 610,854 (344)

Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis

open access: yesAdvanced Functional Materials, EarlyView.
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra   +8 more
wiley   +1 more source

Cascade perovskite single crystal for gamma-ray spectroscopy. [PDF]

open access: yesiScience, 2023
Wang X   +12 more
europepmc   +1 more source

Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation

open access: yesAdvanced Functional Materials, EarlyView.
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu   +12 more
wiley   +1 more source

Downward terrestrial gamma-ray flash associated with collision of lightning leaders. [PDF]

open access: yesSci Adv
Wada Y   +8 more
europepmc   +1 more source

On the X-Ray emission of Gamma Ray Bursts [PDF]

open access: green, 2007
S. Dado, Arnon Dar, A. De Rújula
openalex   +1 more source

‘Oxygen Bound to Magnesium’ as High Voltage Redox Center Causes Sloping of the Potential Profile in Mg‐Doped Layered Oxides for Na‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li   +12 more
wiley   +1 more source

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy