Results 171 to 180 of about 696 (218)

Derivatives of Generalized Gegenbauer Polynomials

Theoretical and Mathematical Physics, 2002
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
García Fuertes, W., Perelomov, A. M.
openaire   +1 more source

Gegenbauer Polynomials Revisited

The Fibonacci Quarterly, 1985
Der Gegenstand dieser Arbeit sind spezielle Polynome, die sich in der Tafel der Gegenbauerschen Polynome entlang der abnehmenden Diagonalen bilden. Dabei werden einige Eigenschaften dieser Polynome diskutiert wie z.B. expliziter Ausdruck, erzeugende Funktion, rekurrenter Ausdruck, Differentialgleichung u.s.w.
openaire   +2 more sources

Information entropy of Gegenbauer polynomials

Journal of Physics A: Mathematical and General, 2000
Summary: The information entropy of Gegenbauer polynomials is relevant since this is related to the angular part of the information entropies of certain quantum mechanical systems such as the harmonic oscillator and the hydrogen atom in \(D\) dimensions.
Buyarov, V. S.   +3 more
openaire   +1 more source

Appendix: Gegenbauer Polynomials

2016
This chapter collects some properties of the Gegenbauer polynomials that we use throughout this work, in particular, in the proof of the explicit formulae for differential symmetry breaking operators (Theorems 1.5, 1.6, 1.7, and 1.8) and the factorization identities for special parameters (Theorems 13.1, 13.2, and 13.3).
Toshiyuki Kobayashi   +2 more
openaire   +1 more source

Higher Spin Generalisation of the Gegenbauer Polynomials

Complex Analysis and Operator Theory, 2016
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
David Eelbode, Tim Janssens
openaire   +2 more sources

Gegenbauer-Sobolev Orthogonal Polynomials

1994
In this paper, orthogonal polynomials in the Sobolev space W 1,2([-1,1], p (α),λ p (α)), where \({\rho ^{(\alpha )}} = {(1 - {x^2})^{\alpha - \frac{1}{2}}},\alpha >- \frac{1}{2}\) and λ ≥ 0, are studied. For these non-standard orthogonal polynomials algebraic and differential properties are obtained, as well as the relation with the classical ...
Francisco Marcellán   +2 more
openaire   +1 more source

Gegenbauer, Jacobi, and Orthogonal Polynomials

2016
In earlier chapters we dealt with special sets of orthogonal polynomials, namely, Chebyshev and Hermite polynomials. In Chs. 9 and 10 we will study other orthogonal polynomials, namely, Laguerre and Legendre. All of these polynomial functions share many properties.
Vasudevan Lakshminarayanan   +1 more
openaire   +1 more source

Uniform inequalities for Gegenbauer polynomials

Acta Mathematica Hungarica, 1996
The usual asymptotic representations of the Gegenbauer (ultraspherical) polynomials do not yield bounds on their absolute values which hold equally on the interval \(-1\leq x\leq 1\). But in the Legendre case (index \(\lambda= {1\over 2}\)) and more generally in the case of \(0\leq \lambda\leq 1\) such estimates exist.
openaire   +2 more sources

Home - About - Disclaimer - Privacy