On the Generalized Class of Multivariable Humbert-Type Polynomials
The present paper deals with the class of multivariable Humbert polynomials having generalization of some well-known polynomials like Gegenbauer, Legendre, Chebyshev, Gould, Sinha, Milovanović-Djordjević, Horadam, Horadam-Pethe, Pathan and Khan, a class ...
B. B. Jaimini +3 more
doaj +2 more sources
Construction of the Shifted Modified Gegenbauer Polynomials and Approximation [PDF]
This article is concerned with deriving a new system of orthogonal polynomials, derived from the Gegenbauer polynomials, modified by affine transforms in variable, named shifted Gegenbauer polynomials. They appear as solutions of linear differential equation.
Abdelhamid Rehouma, Hossein Jafari
openalex +2 more sources
Some identities involving generalized Gegenbauer polynomials [PDF]
In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x )
Zhaoxiang Zhang
doaj +3 more sources
Fekete-Szegö Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [PDF]
In the present paper, a subclass of analytic and biunivalent functions by means of Gegenbauer polynomials is introduced. Certain coefficients bound for functions belonging to this subclass are obtained.
Ala Amourah +2 more
doaj +2 more sources
Coefficients and Fekete–Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials [PDF]
Subclasses of analytic and bi-univalent functions have been extensively improved and utilized for estimating the Taylor–Maclaurin coefficients and the Fekete–Szegö functional.
Abdulmtalb Hussen, Abdelbaset Zeyani
doaj +2 more sources
The orthogonal polynomials approach with Gegenbauer polynomials is an effective tool for analyzing mixed integral equations (MIEs) due to their orthogonality qualities.
Ahmad Alalyani +2 more
doaj +2 more sources
An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions. [PDF]
Hussen A.
europepmc +2 more sources
A NEW CHARACTERIZATION OF SYMMETRIC DUNKL AND \(q\)-DUNKL-CLASSICAL ORTHOGONAL POLYNOMIALS
In this paper, we consider the following \(\mathcal{L}\)-difference equation $$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$where \(\Phi\) is a monic polynomial (even), \(\deg\Phi\leq2\), \(\xi_n ...
Yahia Habbachi
doaj +1 more source
Matrix-Valued Gegenbauer-Type Polynomials [PDF]
Matrix-valued Gegenbauer-type polynomials are investigated. The main results of the paper are stated in Sections 2 and 3. In Section 2 the matrix-valued weight functions \(W^{(\nu)}(x)\), which are analogues of the weight function for the Gegenbauer polynomials \(C^{(\nu)}_n(x)\) are introduced: \(W^{(\nu)}(x)= (1-x^2)^{\nu-1/2}W^{(\nu)}_{\mathrm{pol}}(
Koelink, Erik +2 more
openaire +6 more sources
RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
We consider recurrence relations for the polynomials orthonormal with respect to the Sobolev-type inner product and generated by classical orthogonal polynomials, namely: Jacobi polynomials, Legendre polynomials, Chebyshev polynomials of the first and ...
M. S. Sultanakhmedov
doaj +1 more source

