Results 41 to 50 of about 6,433 (235)
Some identities involving Gegenbauer polynomials [PDF]
11 ...
Seog-Hoon Rim, Dae San Kim, Taekyun Kim
openaire +3 more sources
A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions
Three subclasses of analytic and bi-univalent functions are introduced through the use of q−Gegenbauer polynomials, which are a generalization of Gegenbauer polynomials.
Ala Amourah+5 more
doaj +1 more source
Weighted $$L^2$$-norms of Gegenbauer polynomials [PDF]
We study integrals of the form \begin{equation*} \int_{-1}^1(C_n^{( )}(x))^2(1-x)^ (1+x)^ \, dx, \end{equation*} where $C_n^{( )}$ denotes the Gegenbauer-polynomial of index $ >0$ and $ , >-1$. We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as $n\to\infty$.
Johann S. Brauchart, Peter J. Grabner
openaire +2 more sources
In this paper, we investigate sums of finite products of Chebyshev polynomials of the first kind and those of Lucas polynomials. We express each of them as linear combinations of Hermite, extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials ...
Taekyun Kim+3 more
doaj +1 more source
Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems [PDF]
In this paper, Runge-Kutta-Gegenbauer (RKG) stability polynomials of arbitrarily high order of accuracy are introduced in closed form. The stability domain of RKG polynomials extends in the the real direction with the square of polynomial degree, and in ...
O'Sullivan, Stephen
core +3 more sources
Sequences of Non-Gegenbauer-Humbert Polynomials Meet the Generalized Gegenbauer-Humbert Polynomials [PDF]
Here, we present a connection between a sequence of polynomials generated by a linear recurrence relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many new and known transfer formulas between non-Gegenbauer-Humbert polynomials and generalized Gegenbauer-Humbert polynomials are given.
Tian-Xiao He, Peter J.-S. Shiue
openaire +2 more sources
Some identities involving generalized Gegenbauer polynomials
In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x )
Zhaoxiang Zhang
doaj +1 more source
This paper is concerned with representing sums of the finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials.
Taekyun Kim+3 more
doaj +1 more source
The finite Fourier transform of classical polynomials [PDF]
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain.
Dixit, Atul+3 more
core +3 more sources
The connection problem for orthogonal polynomials is, given a polynomial expressed in the basis of one set of orthogonal polynomials, computing the coefficients with respect to a different set of orthogonal polynomials.
Tom Bella, Jenna Reis
doaj +1 more source