Results 221 to 230 of about 6,521,262 (378)

Microbubble‐Controlled Delivery of Biofilm‐Targeting Nanoparticles to Treat MRSA Infection

open access: yesAdvanced Functional Materials, EarlyView.
Here, an effective strategy using microbubble (MB)‐controlled delivery of biofilm‐targeting nanoparticles (BTNs) for removal and therapy of methicillin‐resistant Staphylococcus aureus (MRSA) biofilm infections is introduced. In vivo delivery of MB with BTN is demonstrated to silence key bacterial genes involved in biofilm formation (icaA), bacterial ...
Ju Yeon Chung   +6 more
wiley   +1 more source

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

Polymer‐Incorporated Mechanically Compliant Carbon Nanotube Microelectrode Arrays for Multichannel Neural Signal Recording

open access: yesAdvanced Functional Materials, EarlyView.
This work presents a soft microelectrode array based on vertically aligned carbon nanotube (CNT) forests, combining high conductivity with mechanical softness. A densification process and air‐pressure‐assisted flexibilization improve structural integrity, ensuring stable insertion and reduced inflammation.
Hyeonhee Roh   +8 more
wiley   +1 more source

Transperineal prostate biopsy under local vs general anaesthesia: a cost-effectiveness analysis. [PDF]

open access: yesBJU Int
Roberts MJ   +12 more
europepmc   +1 more source

Agitation in adults in the post‐anaesthesia care unit after general anaesthesia

open access: yesBritish Journal of Anaesthesia, 2018
A. Fields   +4 more
semanticscholar   +1 more source

Engineering Highly Cellularized Living Materials via Mechanical Agitation

open access: yesAdvanced Functional Materials, EarlyView.
A mechanical agitation strategy is developed to engineer highly cellularized living materials, achieving cell densities of up to 1 billion cells per milliliter. By precisely tuning properties such as stiffness and toughness in blood clots, the approach is validated in both in vitro and in vivo studies.
Aram Bahmani   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy