Results 51 to 60 of about 2,720 (211)

Designing Memristive Materials for Artificial Dynamic Intelligence

open access: yesAdvanced Intelligent Discovery, EarlyView.
Key characteristics required of memristors for realizing next‐generation computing, along with modeling approaches employed to analyze their underlying mechanisms. These modeling techniques span from the atomic scale to the array scale and cover temporal scales ranging from picoseconds to microseconds. Hardware architectures inspired by neural networks
Youngmin Kim, Ho Won Jang
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Artificial Intelligence for Bone: Theory, Methods, and Applications

open access: yesAdvanced Intelligent Discovery, EarlyView.
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan   +3 more
wiley   +1 more source

Extended spherical harmonic expansion using multipolar bases of equivalent magnetic sources on arbitrary surfaces

open access: yesCompel
Purpose The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic expansion far from the source while being valid in its close ...
Gauthier Derenty-Camenen   +5 more
semanticscholar   +1 more source

Deep Learning‐Assisted Coherent Raman Scattering Microscopy

open access: yesAdvanced Intelligent Discovery, EarlyView.
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu   +4 more
wiley   +1 more source

FIRE‐GNN: Force‐Informed, Relaxed Equivariance Graph Neural Network for Rapid and Accurate Prediction of Surface Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces FIRE‐GNN, a force‐informed, relaxed equivariant graph neural network for predicting surface work functions and cleavage energies from slab structures. By incorporating surface‐normal symmetry breaking and machine learning interatomic potential‐derived force information, the approach achieves state‐of‐the‐art accuracy and enables ...
Circe Hsu   +5 more
wiley   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

Clinically Informed Intelligent Classification of Ovarian Cancer Cells by Label‐Free Holographic Imaging Flow Cytometry

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
Quantitative phase maps of single cells recorded in flow cytometry modality feed a hierarchical architecture of machine learning models for the label‐free identification of subtypes of ovarian cancer. The employment of a priori clinical information improves the classification performance, thus emulating the clinical application of liquid biopsy during ...
Daniele Pirone   +11 more
wiley   +1 more source

Multimodal Locomotion of Soft Robots

open access: yesAdvanced Intelligent Systems, EarlyView.
This review comprehensively surveys recent advances in multimodal locomotion within soft robotics. Typical locomotion modes are summarized and categorized. Furthermore, the underlying mechanisms enabling multimodal locomotion are discussed and classified into three primary categories: active control‐based, reconfiguration‐based, and environment ...
Zihao Yuan   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy