Results 31 to 40 of about 22,548 (140)
Control of Open Quantum Systems via Dynamical Invariants
Dynamical invariants are used to reverse‐engineer control fields for open quantum systems described by time‐dependent Lindblad master equations. By minimizing an analytic leakage functional, the protocol dynamically steers the state along an effectively decoherence‐free path without costly iterative propagation.
Loris M. Cangemi +4 more
wiley +1 more source
Jordan homomorphisms and T‐ideals
Abstract Let A$A$ and B$B$ be associative algebras over a field F$F$ with char(F)≠2${\rm char}(F)\ne 2$. Our first main result states that if A$A$ is unital and equal to its commutator ideal, then every Jordan epimorphism φ:A→B$\varphi:A\rightarrow B$ is the sum of a homomorphism and an antihomomorphism. Our second main result concerns (not necessarily
Matej Brešar, Efim Zelmanov
wiley +1 more source
Abstract Boundary Delay Systems and Application to Network Flow
ABSTRACT This paper investigates the well‐posedness and positivity of solutions to a class of delayed transport equations on a network. The material flow is delayed at the vertices and along the edges. The problem is reformulated as an abstract boundary delay equation, and well‐posedness is proved by using the Staffans–Weiss theory.
András Bátkai +2 more
wiley +1 more source
Amalgams of Inverse Semigroups and C*-algebras [PDF]
An amalgam of inverse semigroups [S,T,U] is full if U contains all of the idempotents of S and T. We show that for a full amalgam [S,T,U], the C*-algebra of the inverse semigroup amaglam of S and T over U is the C*-algebraic amalgam of C*(S) and C*(T ...
Donsig, Allan P +2 more
core +2 more sources
Dynamically Consistent Analysis of Realized Covariations in Term Structure Models
ABSTRACT In this article, we show how to analyze the covariation of bond prices nonparametrically and robustly, staying consistent with a general no‐arbitrage setting. This is, in particular, motivated by the problem of identifying the number of statistically relevant factors in the bond market under minimal conditions.
Dennis Schroers
wiley +1 more source
Semigroups of $sl_3(\mathbb{C})$ tensor product invariants
We compute presentations for a family of semigroup algebras related to the problem of decomposing $sl_3(\mathbb{C})$ tensor products. Along the way we find new toric degenerations of the Grassmannian variety $Gr_3(\mathbb{C}^n)$ which $T-$invariant for ...
4ti2 team +14 more
core +1 more source
Abstract In this paper, we consider a class of higher‐order equations and show a sharp upper bound on fractional powers of unbounded linear operators associated with higher‐order abstract equations in Hilbert spaces.
Flank D. M. Bezerra +2 more
wiley +1 more source
Bi-continuous semigroups for flows in infinite networks
We study transport processes on infinite metric graphs with non-constant velocities and matrix boundary conditions in the $\mathrm{L}^{\infty}$-setting.
Budde, Christian +1 more
core +1 more source
This paper presents a comprehensive analysis of the existence, uniqueness, and Ulam–Hyers stability of solutions for a class of Cauchy‐type nonlinear fractional differential equations with variable order and finite delay. The motivation for this study lies in the increasing importance of variable‐order fractional calculus in modeling real‐world systems
Souhila Sabit +5 more
wiley +1 more source
Tensor products and regularity properties of Cuntz semigroups
The Cuntz semigroup of a C*-algebra is an important invariant in the structure and classification theory of C*-algebras. It captures more information than K-theory but is often more delicate to handle.
Antoine, Ramon +2 more
core +1 more source

