Results 31 to 40 of about 7,018 (204)

Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives

open access: yesComplexity, 2021
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence
Danfeng Luo   +4 more
doaj   +1 more source

Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative [PDF]

open access: yes, 2017
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit Hadamard fractional-order ...
BENCHOHRA, Mouffak, LAZREG, Jamal E.
core   +2 more sources

Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions

open access: yesAdvances in Difference Equations, 2020
This paper is concerned with a class of impulsive implicit fractional integrodifferential equations having the boundary value problem with mixed Riemann–Liouville fractional integral boundary conditions. We establish some existence and uniqueness results
Akbar Zada   +3 more
doaj   +1 more source

Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition

open access: yesAdvances in Difference Equations, 2017
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional ...
Akbar Zada, Sartaj Ali, Yongjin Li
doaj   +1 more source

Stability of a functional equation deriving from cubic and quartic functions [PDF]

open access: yes, 2008
In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the cubic and quartic functional equation &4(f(3x+y)+f(3x-y))=-12(f(x+y)+f(x-y)) &+12(f(2x+y)+f(2x-y))-8f(y)-192f(x)+f(2y)+30f(2x)
Ebadian, A.   +2 more
core   +3 more sources

Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach

open access: yes, 2008
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Choonkill Park
semanticscholar   +1 more source

Cauchy-Jensen additive mappings in quasi-Banach algebras and its applications [PDF]

open access: yes, 2013
In this paper, we prove the Hyers-Ulam stability of homomorphisms in quasi-Banach algebras and of generalized derivations on quasi-Banach algebras for the following Cauchy-Jensen additive ...
Abbas Najati, Choonkil Park
core   +1 more source

Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations

open access: yesAdvances in Difference Equations, 2021
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan   +5 more
doaj   +1 more source

Asymptotic stability of the Cauchy and Jensen functional equations [PDF]

open access: yes, 2016
The aim of this note is to investigate the asymptotic stability behaviour of the Cauchy and Jensen functional equations. Our main results show that if these equations hold for large arguments with small error, then they are also valid everywhere with a ...
A. Bahyrycz   +19 more
core   +2 more sources

Generalized Hyers-Ulam Stability of Trigonometric Functional Equations

open access: yes, 2018
In the present paper we study the generalized Hyers–Ulam stability of the generalized trigonometric functional equations f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( x ) g ( y ) + 2 h ( y ) , x , y ∈ S ; f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( y ) g (
E. Elqorachi, M. Rassias
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy