Results 31 to 40 of about 7,018 (204)
In this article, we make analysis of the implicit fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We use some sufficient conditions to achieve the existence
Danfeng Luo +4 more
doaj +1 more source
Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative [PDF]
The purpose of this paper is to establish some types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit Hadamard fractional-order ...
BENCHOHRA, Mouffak, LAZREG, Jamal E.
core +2 more sources
This paper is concerned with a class of impulsive implicit fractional integrodifferential equations having the boundary value problem with mixed Riemann–Liouville fractional integral boundary conditions. We establish some existence and uniqueness results
Akbar Zada +3 more
doaj +1 more source
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional ...
Akbar Zada, Sartaj Ali, Yongjin Li
doaj +1 more source
Stability of a functional equation deriving from cubic and quartic functions [PDF]
In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the cubic and quartic functional equation &4(f(3x+y)+f(3x-y))=-12(f(x+y)+f(x-y)) &+12(f(2x+y)+f(2x-y))-8f(y)-192f(x)+f(2y)+30f(2x)
Ebadian, A. +2 more
core +3 more sources
Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Choonkill Park
semanticscholar +1 more source
Cauchy-Jensen additive mappings in quasi-Banach algebras and its applications [PDF]
In this paper, we prove the Hyers-Ulam stability of homomorphisms in quasi-Banach algebras and of generalized derivations on quasi-Banach algebras for the following Cauchy-Jensen additive ...
Abbas Najati, Choonkil Park
core +1 more source
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan +5 more
doaj +1 more source
Asymptotic stability of the Cauchy and Jensen functional equations [PDF]
The aim of this note is to investigate the asymptotic stability behaviour of the Cauchy and Jensen functional equations. Our main results show that if these equations hold for large arguments with small error, then they are also valid everywhere with a ...
A. Bahyrycz +19 more
core +2 more sources
Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
In the present paper we study the generalized Hyers–Ulam stability of the generalized trigonometric functional equations f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( x ) g ( y ) + 2 h ( y ) , x , y ∈ S ; f ( x y ) + μ ( y ) f ( x σ ( y ) ) = 2 f ( y ) g (
E. Elqorachi, M. Rassias
semanticscholar +1 more source

